Af An Al
 Digital Signal Processing

Lecture 19

- Last time
- Upsampling
- Resampling by rational fraction
- Today
- Interchanging Compressors/Expanders with filtering
-Polyphase decomposition
-Multi-rate processing

Interchanging Operations

$$
x[n] \rightarrow \mathrm{M} \rightarrow H(z) \rightarrow y[n] \equiv x[n] \rightarrow H\left(z^{M}\right) \rightarrow \downarrow \mathrm{M} \rightarrow y[n]
$$

- Fortunately there are ways around it!
- Called multi-rate
- Uses compressors, expanders and filtering

Polyphase Decomposition
-We can decomposed an impulse response to:

$$
h[n]=\sum_{k=0}^{M-1} h_{k}[n-k]
$$

Polyphase Decomposition

$$
e_{k}[n] \rightarrow \uparrow \mathrm{M} \rightarrow h_{k}[n]
$$

recall upsampling \Rightarrow scaling

$$
H_{k}(z)=E_{k}\left(z^{M}\right)
$$

Also, recall:

$$
h[n]=\sum_{k=0}^{M-1} h_{k}[n-k]
$$

So,

$$
H(z)=\sum_{k=0}^{M-1} E_{k}\left(z^{M}\right) z^{-k}
$$

Polyphase Decomposition

- Define:

$$
\begin{gathered}
h_{k}[n] \rightarrow \downarrow \mathrm{M} \longrightarrow e_{k}[n] \\
e_{k}[n]=h_{k}[n M]
\end{gathered}
$$

Polyphase Decomposition

$$
H(z)=\sum_{k=0}^{M-1} E_{k}\left(z^{M}\right) z^{-k}
$$

Why should you care?

Polyphase Implementation of Decimation

$$
x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow \downarrow \mathrm{M} \rightarrow w[n]=y[n M]
$$

- Problem:
-Compute all y[n] and then throw away -wasted computation!
-For FIR length $N \Rightarrow N$ mults/unit time
-Can interchange Filter with compressor?
- Not in genera!!

Polyphase Implementation of Decimation

$$
x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow\lfloor\mathrm{M} \rightarrow w[n]=y[n M]
$$

Polyphase Implementation of Decimation

$$
x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow \downarrow \mathrm{M} \rightarrow w[n]=y[n M]
$$

Interchange filter with decimation

Each Filter: N / M *($1 / \mathrm{M}$) mult/unit time
Total: N/M mult/unit time

Multirate FilterBank

- $h_{0}[n]$ is low-pass, $h_{1}[n]$ is high-pass
- Often $h_{1}[n]=e^{j \pi n} h_{0}[n]$ or $H_{1}\left(e^{j \omega}\right)=H_{0}\left(e^{j(w-\pi)}\right)$

Subtleties in Time-Freq Tiling

- Assume h_{0}, h_{1} are ideal low,high pass filters

Subtleties in Time-Freq Tiling

- Assume h_{0}, h_{1} are ideal low,high pass filters

Subtleties in Time-Freq Tiling

- Assume h_{0}, h_{1} are ideal low,high pass filters

Subtleties in Time-Freq Tiling

- Assume h_{0}, h_{1} are ideal low,high pass filters

Perfect Reconstruction Ideal Filters

Quadrature Mirror Filters - perfect recon

Quadrature Mirror Filters - perfect recon

M. Lustig, EECS UC Berkeley

Polyphase Filter-Bank

