





- -Crop part of the signal
- -Suffer from noise and interference (See lab II !)



M. Lustig, EECS UC Berkeley









## Sampling and Quantization

• for 2's complement with B+1 bits  $-1 \le \hat{x}_B[n] < 1$ 





## Noise Model for Quantization Error

- Assumptions:
  - -Model e[n] as a sample sequence of a stationary random process
  - e[n] is not correlated with x[n]
  - e[n] not correlated with e[m], e.g., white noise
  - $e[n] \sim U[-\Delta/2, \Delta/2]$
- Result:

– Variance is: 
$$\sigma_e^2 = \frac{\Delta^2}{12}$$
 , or  $\sigma_e^2 = \frac{2^{-2B}X_m^2}{12}$  since  $\Delta = 2^{-B}X_m$ 

– Assumptions work well for signals that change rapidly, are not clipped and for small  $\Delta$ 

M. Lustig, EECS UC Berkeley



**Quantization Noise** 

SNR of Quantization Noise

• For uniform B+1 bits quantizer:  $\sigma_e^2 = \frac{2^{-2B}X_m^2}{12}$ 

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2}\right)$$
$$= 10 \log_{10} \left(\frac{12 \cdot 2^{2B} \sigma_x^2}{X_m^2}\right)$$

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_x}\right)^{\text{Quantizer range}}_{\text{rms of amp}}$$

M. Lustig, EECS UC Berkeley

M. Lustig, EECS UC Berkeley

SNR of Quantization Noise  

$$SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_x}\right)_{\text{rms of amp}}^{\text{Quantizer range}}$$
• Improvement of 6dB with every bit  
• The range of the quantization must be  
adapted to the rms amplitude of the signal  
-Tradeoff between clipping and noise!  
-If  $\sigma_x = X_m/4$  then  $SNR_Q \approx 6B - 1.25dB$   
so SNR of 90-96 dB requires 16-bits (audio)

M. Lustig, EECS UC Berkeley



- Scaled train of sinc pulses
- Difficult to generate sinc  $\Rightarrow$  Too long!











## **Practical ADC**







