4min
 Digital Signal Processing

Lecture 26

Where's the stroke?

M. Lustig, EECS UC Berkeley

Why I Love MRI

Where is the stroke?

Lab 3 - Part I

- Purpose is to test your radio interface
- Learn about what you can do
- Work with the SDR and the radio
- Start working on it now!

Testing VOX transmit

- You want to find the pulse length that is:
- Long enough to activates the VOX
- Short enough that radio does not start transmitting the tone
- Add zeros so the signal sent immediately after will be heard -- good to have extra delay to let squelch on reciev radio to open


```
    Qin = Queue.Queue()
    Qout = Queue.Queue()
    # create a pyaudio object
    p=pyaudi. PyAudio()
    # find the device numbers for builitin IO and the USB
    din, dout, dusb = audioDevNumbers(p)
    # intialize a recording thread. The USB device only supports 44.1KHz sampling rate
    t_rec = threading,Thread(target = record_audio, args = (Qin, p, 44100, dusb ))
    # initilize a playing thread.
    t_play = threading.Thread(target = play__ucio, args =(Qout, p, 44100, dout )
    # start the recording and playing threads
    t_rec.start)
    t_play.start)
    # record and play about 10 seconds of audio 430*1024/44100=9.98 s
    for n in range(0,430):
    samples = Qin.get()
    # You can add code here to do processing on samples in chunks of 1024
    # you will have to implement an overlap an add, or overlap an save to get
    # continuity between chunks
    Qout.put(samples)
    p.terminate()
```


- Of the Radio Audio input

- Play a chirp
- Listen using SDR
- Demodulate

Frequency Response

M. Lustig, EECS UC Berkeley

Projects

- Select a project by next Friday
- Submit 2 paragraph project proposal on bspace
- Includes Topic and the scope of the project
- Project Deliverables
- Software
- Demo
- A few slides / Poster

Morse Code Function

- Write a function
- Converts text to morse
- Transmit and receive

Project Topics

- Default: SSTV Transceiver System
- Implement a Xeiver for one of the ham SSTV protocols. For example Martin M1/ Scottie S1-4
- Transmitter straightforward
- Good receiver system makes all the difference Martin M1

A Lot about the receiver.....

More project ideas

- DTMF/Voice Controlled something
- Message board
- Answering system
- Voice Mail
- Cross-band FM repeater chat room with a control channel
- SDR receives large band
- Transmits combined signals on another channel
- Need to register or have a code to join... maybe?

More Projects

- Simple voice recognition
- Implementation / Invention of ANY useful ham protocol
- High-Quality audio by time-stretching or scrambling

More Challenging Projects

- Separation of two interfering FM signals for repeaters
- A fancy communication channel OFDM/ QAM over voice
- Phased Array RTL-Receiver
- Passive Radar
- Direction detection
- Weak signal Communication with FM radios and SDR

Magnitude Response

$$
\left|H\left(e^{j \omega}\right)\right|=\left|\frac{b_{0}}{a_{0}}\right| \cdot \frac{\prod_{k=0}^{M}\left|1-c_{k} e^{-j \omega}\right|}{\prod_{k=0}^{N}\left|1-d_{k} e^{-j \omega}\right|}
$$

Consider one of the poles:

$$
\left|1-d_{k} e^{-j \omega}\right|=\left|e^{+j \omega}-d_{k}\right|=\left|v_{1}\right|
$$

Magnitude Response Example

Example:

$$
\begin{gathered}
H(z)=0.05 \frac{1+z^{-1}}{1-0.9 z^{-1}} \\
|H(z)|=0.05 \frac{\left|v_{2}\right|}{\left|v_{1}\right|}
\end{gathered}
$$

M. Lustig, EECS UC Berkeley

Group delay

To characterize general phase response, look at the group delay:

$$
\operatorname{grd}\left[H\left(e^{j \omega}\right)\right]=-\frac{d}{d \omega}\left\{\arg \left[H\left(e^{j \omega}\right)\right]\right\}
$$

For linear phase system, the group delay is n_{d}

Phase response

Example: $\quad H\left(e^{j \omega}\right)=e^{-j \omega n_{d}} \quad \leftrightarrow \quad h[n]=\delta\left[n-n_{d}\right]$

$$
\begin{aligned}
& \left|H\left(e^{j \omega}\right)\right|=1 \\
& \arg \left[H\left(e^{j \omega}\right)\right]=-\omega n_{d}
\end{aligned}
$$

M. Lustig, EECS UC Berkele

Group delay

$$
\operatorname{grd}\left[H\left(e^{j \omega}\right)\right]=-\frac{d}{d \omega}\left\{\arg \left[H\left(e^{j \omega}\right)\right]\right\}
$$

Input

Output

For narrowband signals, phase response looks like a linear phase

Group delay math

$$
H(z)=\frac{b_{0}}{a_{0}} \frac{\prod_{k=1}^{M}\left(1-c_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)}
$$

$$
\begin{aligned}
\arg \text { of products is sum of args } & \begin{aligned}
\arg \left[H\left(e^{j \omega}\right)\right]= & -\sum_{k=1}^{N} \arg \left[1-d_{k} e^{-j \omega}\right] \\
& +\sum_{k=1}^{M} \arg \left[1-a_{k} e^{-j \omega}\right] \\
\operatorname{grd}\left[H\left(e^{j \omega}\right)\right]= & -\sum_{k=1}^{N} \operatorname{ard}\left[1-d_{k} e^{-j \omega}\right] \\
& +\sum_{k=1}^{M} \operatorname{ard}\left[1-c_{k} e^{-j \omega}\right]
\end{aligned}
\end{aligned}
$$

M. Lustig, EECS UC Berkeley

Group delay math

$$
\begin{aligned}
\operatorname{grd}\left[H\left(e^{j \omega}\right)\right]= & -\sum_{k=1}^{N} \operatorname{grd}\left[1-d_{k} e^{-j \omega}\right] \\
& +\sum_{k=1}^{M} \operatorname{grd}\left[1-c_{k} e^{-j \omega}\right]
\end{aligned}
$$

Look at each factor:

$$
\begin{aligned}
\arg [\underbrace{1-r e^{j \theta}}_{c_{k} \operatorname{cordk}} e^{-j \omega}] & =\tan ^{-1}\left(\frac{r \sin (\omega-\theta)}{1-r \cos (\omega-\theta)}\right) \\
\operatorname{grd}\left[1-r e^{j \theta} e^{-j \omega}\right] & =\frac{r^{2}-r \cos (\omega-\theta)}{\left|1-r e^{j \theta} e^{-j \omega}\right|^{2}}
\end{aligned}
$$

Look at a zero lying on the real axis

$\theta \neq 0 \Rightarrow$ shift to the right by θ

