UC Berkeley
 Department of Electrical Engineering and Computer Sciences

EE126: Probability and Random Processes

Discussion Section 13

Fall 2018

Problem 1. Conditioning on the Minimum of Uniforms
If X and Y are independent Uniform $[0,1]$, show that

$$
\mathbb{E}(Y \mid \min \{X, Y\})=\frac{1}{4}+\frac{3}{4} \min \{X, Y\} .
$$

Problem 2. MMSE with Balls in Bins
We throw $n \geq 1$ balls into $m \geq 2$ bins. Let X and Y represent the number of balls that land in bin 1 and 2 respectively.

1. Calculate $\mathbb{E}[Y \mid X]$.
2. What are $L[Y \mid X]$ and $Q[Y \mid X]$ (where $Q[Y \mid X]$ is the best quadratic estimator of Y given X)?

Hint: Your justification should be no more than two or three sentences, no calculations necessary! Think carefully about the meaning of the MMSE.

Problem 3. MMSE for Jointly Gaussian
Let $\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{T} \sim \mathcal{N}(\mu, \Sigma)$, and

$$
\mu=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

and

$$
\Sigma=\left[\begin{array}{lll}
5 & 3 & 1 \\
3 & 9 & 3 \\
1 & 3 & 2
\end{array}\right]
$$

Find $\mathbb{E}[X \mid Y, Z]$.

