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Problem 1. Forrest Gump
Forrest Gump is running across the United States, and we would like to track his
progress. Assume that on day n ∈ N he runs X(n) miles, and the amount he
runs each day is determined by the amount he ran on the previous day with some
random noise in the following manner: X(n) = αX(n − 1) + V (n). Unfortunately,
the measurements of the distance he traveled on each day are also subject to some
noise. Assume that Y (n) gives the measured number of miles Forrest Gump traveled
on day n and that Y (n) = βX(n) + W (n). For this problem, assume that X(0) ∼
N (0, σ2X),W (n) ∼ N (0, σ2W ), V (n) ∼ N (0, σ2V ) are independent.

1. Suppose that you observe Y (0). Find the MMSE of X(0) given this observa-
tion.

2. Express both E[Y (n) | Y (0), . . . , Y (n − 1)] and E[X(n) | Y (0), . . . , Y (n − 1)]
in terms of X̂(n − 1), where X̂(n − 1) is the MMSE of X(n − 1) given the
observations Y (0), Y (1), . . . , Y (n− 1).

3. Show that:
X̂(n) = αX̂(n− 1) + kn[Y (n)− αβX̂(n− 1)]

where

kn =
cov(X(n), Ỹ (n))

var Ỹ (n)

and Ỹ (n) = Y (n)− L[Y (n) | Y (0), Y (1), . . . , Y (n− 1)].

Problem 2. Hidden Markov Models
A hidden Markov model (HMM) is a Markov chain {Xn}∞n=0 in which the states
are considered “hidden” or “latent”. In other words, we do not directly observe
{Xn}∞n=0. Instead, we observe {Yn}∞n=0, where Q(x, y) is the probability that state
x will emit observation y. π0 is the initial distribution for the Markov chain, and P
is the transition matrix.

1. What is Pr(X0 = x0, Y0 = y0, . . . , Xn = xn, Yn = yn), where n is a positive
integer, x0, . . . , xn are hidden states, and y0, . . . , yn are observations?

2. What is Pr(X0 = x0 | Y0 = y0)?

3. We observe (y0, . . . , yn) and we would like to find the most likely sequence of
hidden states (x0, . . . , xn) which gave rise to the observations. Let

U(xm,m) = max
xm+1,...,xn∈X

Pr(Xm = xm, Xm+1:n = xm+1:n, Y0:n = y0:n)
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denote the largest probability for a sequence of hidden states beginning at
state xm at time m ∈ N, along with the observations (y0, . . . , yn). Develop a
recursion for U(xm,m) in terms of U(xm+1,m+ 1), xm+1 ∈ X .
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