UC Berkeley
 Department of Electrical Engineering and Computer Sciences

EE126: Probability and Random Processes

Discussion Session 14

Fall 2018

Problem 1. Forrest Gump

Forrest Gump is running across the United States, and we would like to track his progress. Assume that on day $n \in \mathbb{N}$ he runs $X(n)$ miles, and the amount he runs each day is determined by the amount he ran on the previous day with some random noise in the following manner: $X(n)=\alpha X(n-1)+V(n)$. Unfortunately, the measurements of the distance he traveled on each day are also subject to some noise. Assume that $Y(n)$ gives the measured number of miles Forrest Gump traveled on day n and that $Y(n)=\beta X(n)+W(n)$. For this problem, assume that $X(0) \sim$ $\mathcal{N}\left(0, \sigma_{X}^{2}\right), W(n) \sim \mathcal{N}\left(0, \sigma_{W}^{2}\right), V(n) \sim \mathcal{N}\left(0, \sigma_{V}^{2}\right)$ are independent.

1. Suppose that you observe $Y(0)$. Find the MMSE of $X(0)$ given this observation.
2. Express both $\mathbb{E}[Y(n) \mid Y(0), \ldots, Y(n-1)]$ and $\mathbb{E}[X(n) \mid Y(0), \ldots, Y(n-1)]$ in terms of $\hat{X}(n-1)$, where $\hat{X}(n-1)$ is the MMSE of $X(n-1)$ given the observations $Y(0), Y(1), \ldots, Y(n-1)$.
3. Show that:

$$
\hat{X}(n)=\alpha \hat{X}(n-1)+k_{n}[Y(n)-\alpha \beta \hat{X}(n-1)]
$$

where

$$
k_{n}=\frac{\operatorname{cov}(X(n), \tilde{Y}(n))}{\operatorname{var} \tilde{Y}(n)}
$$

and $\tilde{Y}(n)=Y(n)-L[Y(n) \mid Y(0), Y(1), \ldots, Y(n-1)]$.

Problem 2. Hidden Markov Models

A hidden Markov model (HMM) is a Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ in which the states are considered "hidden" or "latent". In other words, we do not directly observe $\left\{X_{n}\right\}_{n=0}^{\infty}$. Instead, we observe $\left\{Y_{n}\right\}_{n=0}^{\infty}$, where $Q(x, y)$ is the probability that state x will emit observation $y . \pi_{0}$ is the initial distribution for the Markov chain, and P is the transition matrix.

1. What is $\operatorname{Pr}\left(X_{0}=x_{0}, Y_{0}=y_{0}, \ldots, X_{n}=x_{n}, Y_{n}=y_{n}\right)$, where n is a positive integer, x_{0}, \ldots, x_{n} are hidden states, and y_{0}, \ldots, y_{n} are observations?
2. What is $\operatorname{Pr}\left(X_{0}=x_{0} \mid Y_{0}=y_{0}\right)$?
3. We observe $\left(y_{0}, \ldots, y_{n}\right)$ and we would like to find the most likely sequence of hidden states $\left(x_{0}, \ldots, x_{n}\right)$ which gave rise to the observations. Let

$$
U\left(x_{m}, m\right)=\max _{x_{m+1}, \ldots, x_{n} \in \mathcal{X}} \operatorname{Pr}\left(X_{m}=x_{m}, X_{m+1: n}=x_{m+1: n}, Y_{0: n}=y_{0: n}\right)
$$

denote the largest probability for a sequence of hidden states beginning at state x_{m} at time $m \in \mathbb{N}$, along with the observations $\left(y_{0}, \ldots, y_{n}\right)$. Develop a recursion for $U\left(x_{m}, m\right)$ in terms of $U\left(x_{m+1}, m+1\right), x_{m+1} \in \mathcal{X}$.

