UC Berkeley
 Department of Electrical Engineering and Computer Sciences

EE126: Probability and Random Processes

Discussion Session 2

Fall 2018

Problem 1. Linearity of Expectation, Independence
Let X_{1}, X_{2}, X_{3} be discrete independent random variables with mean 0 . Find $\mathbb{E}\left[\left(X_{1}+\right.\right.$ $\left.\left.X_{2}\right)\left(X_{2}+X_{3}\right)\left(X_{3}+X_{1}\right)\right]$.

Problem 2. Poisson Packet Routing

Packets arriving at a switch are routed to either destination A (with probability p) or destination B (with probability $1-p$). The destination of each packet is chosen independently of each other. In the time interval $[0,1]$, the number of arriving packets is $\operatorname{Pois}(\lambda)$.

1. Show that the number of packets routed to A is Poisson distributed. With what parameter?
2. Are the number of packets routed to A and to B independent?

Problem 3. Poisson Merging

The Poisson distribution is used to model rare events, such as the number of customers who enter a store in the next hour. The theoretical justification for this modeling assumption is that the limit of the binomial distribution, as the number of trials n goes to ∞ and the probability of success per trial p goes to 0 , such that $n p \rightarrow \lambda>0$, is the Poisson distribution with mean λ.
Now, suppose we have two independent streams of rare events (for instance, the number of female customers and male customers entering a store), and we do not care to distinguish between the two types of rare events. Can the combined stream of events be modeled as a Poisson distribution?
Mathematically, let X and Y be independent Poisson random variables with means λ and μ respectively. Prove that $X+Y \sim \operatorname{Pois}(\lambda+\mu)$. (This is known as Poisson merging.) Note that it is not sufficient to use linearity of expectation to say that $X+Y$ has mean $\lambda+\mu$. You are asked to prove that the distribution of $X+Y$ is Poisson.
Note: This property will be extensively used when we discuss Poisson processes.

Figure 1: Friendship and clustering coefficient.

Problem 4. [Extra] Clustering Coefficient

This problem will explore an important probabilistic concept of clustering that is widely used in machine learning applications today. Consider n students, where n is a positive integer. For each pair of students $i, j \in\{1, \ldots, n\}, i \neq j$, they are friends with probability p, independently of other pairs. We assume that friendship is mutual. We can see that the friendship among the n students can be represented by an undirected graph G. Let $N(i)$ be the number of friends of student i and $T(i)$ be the number of triangles attached to student i. We define the clustering coefficient $C(i)$ for student i as follows:

$$
C(i)=\frac{T(i)}{\binom{N(i)}{2}}
$$

The clustering coefficient is not defined for the students who have no friends. An example is shown in Figure 1. Student 3 has 4 friends (1, 2, 4,5) and there are two triangles attached to student 3, i.e., triangle 1-2-3 and triangle 2-3-4. Therefore $C(3)=2 /\binom{4}{2}=1 / 3$.
Find $\mathbb{E}[C(i) \mid N(i) \geq 2]$.

