UC Berkeley

Department of Electrical Engineering and Computer Sciences

EE126: PROBABILITY AND RANDOM PROCESSES

Discussion Session III

Fall 2018

Problem 1. Change of Variables

1. Suppose that X has the **standard normal distribution**, that is, X is a continuous random variable with density function

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

What is the density function of $\exp X$? (The answer is called the **lognormal** distribution.)

- 2. Suppose that X is an arbitrary continuous random variable with density f. What is the density of X^2 ?
- 3. What is the answer to the previous question when *X* has the standard normal distribution? (This is known as the **chi-squared distribution**.)

Problem 2. Exponential Fun

1. Let X_1 and X_2 be i.i.d. exponential random variables with parameter λ . Show that the PDF of $X_1 + X_2$ is given by

$$f_{X_1+X_2}(x) = \lambda^2 x e^{-\lambda x}$$
, for $x > 0$.

2. Now, for a positive integer n, let X_1, \ldots, X_n be i.i.d. exponential random variables with parameter λ and $S_n \stackrel{\Delta}{=} X_1 + \ldots + X_n$. The PDF of S_n is given by the n-fold convolution of the exponential distribution with itself. Show that the PDF of S_n is given by

$$f_{S_n}(x) = \frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!}, \text{ for } x > 0.$$

3. Using the above result, consider now the random sum $S_N = X_1 + \cdots + X_N$, where N is a geometric random variable with parameter p. Compute the PDF of S_N .

Problem 3. Order Statistics

For n a positive integer, let X_1, \ldots, X_n be i.i.d. continuous random variables with common PDF f and CDF F. For $i = 1, \ldots, n$, let $X^{(i)}$ be the ith smallest of X_1, \ldots, X_n , so we have $X^{(1)} \leq \cdots \leq X^{(n)}$. $X^{(i)}$ is known as the ith order statistic.

1

- 1. What is the CDF of $X^{(i)}$?
- 2. Differentiate the CDF to obtain the PDF of $X^{(i)}$.
- 3. Can you obtain the PDF of $X^{(i)}$ directly?