UC Berkeley

Department of Electrical Engineering and Computer Sciences

EE126: PROBABILITY AND RANDOM PROCESSES

Discussion Session 4

Fall 2018

Problem 1. Exponential Bounds Let $X \sim \text{Exp}(\lambda)$. For $x > \lambda^{-1}$, calculate bounds on $\Pr(X \ge x)$ using Markov's Inequality and the Chebyshev's Inequality.

Problem 2. First Time to Decrease

Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of independent and identically distributed (i.i.d.) continuous random variables with common PDF f.

- 1. Argue that $Pr(X_i = X_j) = 0$ for $i \neq j$.
- 2. Calculate $Pr(X_1 \leq X_2 \leq \cdots \leq X_{n-1})$.
- 3. Let N be a random variable which is equal to the first time that the sequence of the random variables will decrease, i.e.

$$N = \min\{n \in \mathbb{Z}_{\geq 2} \mid X_{n-1} > X_n\}.$$

Calculate $\mathbb{E}[N]$.

Problem 3. Second Moment Method

Consider a non-negative RV Y, with $\mathbb{E}(Y^2) < \infty$. Show that

$$\mathbb{P}(Y > 0) \ge \frac{\mathbb{E}(Y)^2}{\mathbb{E}(Y^2)}.$$

Hint: Use Cauchy-Schwarz on $Y1_{\{Y>0\}}$.

Problem 4. [Bonus] Gaussian Tail Bounds

Let $\phi(y) = \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}}$ be the PDF of a standard normal random variable $Y \sim \mathcal{N}(0, 1)$.

1. Show that for $y \neq 0$ we have that

$$\phi(y) = -\frac{1}{y} \cdot \phi'(y).$$

2. Use (a) to show that

$$\Pr(Y \ge t) \le \frac{1}{t} \cdot \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}}, \quad \text{for all } t > 0.$$

3. Use part (a) to show that

$$\left(\frac{1}{t} - \frac{1}{t^3}\right) \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} \le \Pr(Y \ge t), \quad \text{for all } t > 0.$$

1