UC Berkeley

Department of Electrical Engineering and Computer Sciences

EE126: Probability and Random Processes

Discussion Session 6

Fall 2018

Problem 1. Markov Chain Practice

Consider a Markov chain with three states 0, 1, and 2. The transition probabilities are P(0,1) = P(0,2) = 1/2, P(1,0) = P(1,1) = 1/2, and P(2,0) = 2/3, P(2,2) = 1/3.

- (a) Classify the states in the chain. Is this chain periodic or aperiodic?
- (b) In the long run, what fraction of time does the chain spend in state 1?
- (c) Suppose that X_0 is chosen according to the steady state distribution. What is $Pr(X_0 = 0 \mid X_2 = 2)$?
- (d) Suppose that $X_0 = 0$, and let T denote the first time by which the process has visited all the states. Find $\mathbb{E}[T]$.

Problem 2. Running Sum of a Markov Chain

Let $(X_n)_{n\in\mathbb{N}}$ be a Markov chain with two states, -1 and 1, and transition probabilities P(-1,1)=P(1,-1)=a for $a\in(0,1)$. Define

$$Y_n = X_0 + X_1 + \dots + X_n.$$

For what values of a is $(Y_n)_{n\in\mathbb{N}}$ a Markov chain?

Problem 3. Finite Random Walk

- (a) Find the steady-state probabilities π_0, \ldots, π_{k-1} for the Markov chain in Figure 1. Here, k is a positive integer and $p \in (0,1)$. Express your answer in terms of the ratio $\rho = p/q$, where q = 1 p. Pay particular attention to the special case $\rho = 1$.
- (b) Find the limit of π_0 as k approaches infinity; give separate answers for $\rho < 1$, $\rho = 1$, and $\rho > 1$. Find limiting values of π_{k-1} for the same cases.

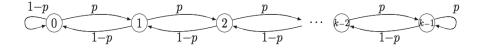


Figure 1: Markov chain for Problem 3