UC Berkeley
 Department of Electrical Engineering and Computer Sciences

EE126: Probability and Random Processes

Discussion Section 9

Fall 2018

Problem 1. Poisson Practice

Let $(N(t), t \geq 0)$ be a Poisson process with rate λ. Let T_{k} denote the time of k-th arrival, for $k \in \mathbb{N}$, and given $0 \leq s<t$, we write $N(s, t)=N(t)-N(s)$. Compute:

1. $\mathbb{P}(N(1)+N(2,4)+N(3,5)=0)$.
2. $\mathbb{E}(N(1,3) \mid N(1,2)=3)$.
3. $\mathbb{E}\left(T_{2} \mid N(2)=1\right)$.

Solution 1. 1. The event $\{N(1)+N(2,4)+N(3,5)=0\}$ is the same as the intersection of 2 events, $\{N(1)=0\}$ and $\{N(2,5)=0\}$. These are independent with probabilities $\exp (-\lambda)$ and $\exp (-3 \lambda)$. Hence

$$
\mathbb{P}[N(1)+N(2,4)+N(3,5)=0]=\exp (-4 \lambda) .
$$

2. $N(1,3)=N(1,2)+N(2,3)$. We know $N(2,3)$ is independent of $N(1,2)$. Hence, $\mathbb{E}(N(1,3) \mid N(1,2)=3)=3+\lambda$.
3. Since $N(2)=1$, the second interarrival time T_{2} hasn't lapsed yet at $t=2$. From the memoryless property of the exponential distribution:

$$
\mathbb{E}\left(T_{2}-2 \mid N(2)=1\right)=\frac{1}{\lambda} .
$$

Hence the answer is $2+\lambda^{-1}$.

Problem 2. Customers in a Store

Consider two independent Poisson processes with rates λ_{1} and λ_{2}. Those processes measure the number of customers arriving in store 1 and 2.

1. What is the probability that a customer arrives in store 1 before any arrives in store 2 ?
2. What is the probability that in the first hour exactly 6 customers arrive, in total, at the two stores?
3. Given that exactly 6 have arrived, in total, at the two stores, what is the probability that exactly 4 went to store 1 ?

Solution 2. 1. Solution 1: Consider the sum of two processes which is a Poisson process with rate $\lambda_{1}+\lambda_{2}$. You mark each customer in this process as 1 with probability $\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$ and mark as 2 otherwise. The resulting two processes are Poisson processes of rates λ_{1} and λ_{2}. Thus, the probability of having the first customer going to store 1 is equal to the probability of marking the first customer as 1 which is

$$
\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
$$

Solution 2:The arrival times of the first customer of the two stores are $X \sim$ Exponential $\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Exponential}\left(\lambda_{2}\right)$, respectively. Then using the total probability theorem we have that

$$
\begin{aligned}
\operatorname{Pr}(X<Y) & =\int_{0}^{\infty} f_{Y}(y) \operatorname{Pr}(X<Y \mid Y=y) d y \\
& =\int_{0}^{\infty} \lambda_{2} \exp ^{-\lambda_{2} y}\left(1-\exp ^{-\lambda_{1} y}\right) d y \\
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} .
\end{aligned}
$$

2.

$$
\frac{\exp ^{-\left(\lambda_{1}+\lambda_{2}\right)}\left(\lambda_{1}+\lambda_{2}\right)^{6}}{6!}
$$

3.

$$
\binom{6}{4}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{4}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{2} .
$$

Problem 3. Minimum and Maximum of Exponentials

Let $\lambda_{1}, \lambda_{2}>0$, and $X_{1} \sim \operatorname{Exponential}\left(\lambda_{1}\right), X_{2} \sim \operatorname{Exponential}\left(\lambda_{2}\right)$ are independent. Also, define $U:=\min \left(X_{1}, X_{2}\right)$ and $V:=\max \left(X_{1}, X_{2}\right)$. Show that U and $V-U$ are independent.

Solution 3. For $u, w>0$,

$$
\begin{aligned}
\operatorname{Pr}(U & \left.\leq u, V-U \leq w, X_{1}<X_{2}\right)=\operatorname{Pr}\left(X_{1} \leq u, X_{1}<X_{2} \leq X_{1}+w\right) \\
& =\int_{0}^{u} \int_{x_{1}}^{x_{1}+w} \lambda_{2} \exp \left(-\lambda_{2} x_{2}\right) d x_{2} \lambda_{1} \exp \left(-\lambda_{1} x_{1}\right) d x_{1} \\
& =\int_{0}^{u}\left\{\exp \left(-\lambda_{2} x_{1}\right)-\exp \left(-\lambda_{2}\left(x_{1}+w\right)\right)\right\} \lambda_{1} \exp \left(-\lambda_{1} x_{1}\right) d x_{1} \\
& =\left(1-\exp \left(-\lambda_{2} w\right)\right) \int_{0}^{u} \lambda_{1} \exp \left(-\left(\lambda_{1}+\lambda_{2}\right) x_{1}\right) d x_{1} \\
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\left(1-\exp \left\{-\left(\lambda_{1}+\lambda_{2}\right) u\right\}\right)\left(1-\exp \left(-\lambda_{2} w\right)\right) .
\end{aligned}
$$

By symmetry, interchanging the roles of 1 and 2 yields

$$
\begin{aligned}
\operatorname{Pr}(U & \left.\leq u, V-U \leq w, X_{2}<X_{1}\right) \\
& =\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\left(1-\exp \left\{-\left(\lambda_{1}+\lambda_{2}\right) u\right\}\right)\left(1-\exp \left(-\lambda_{1} w\right)\right)
\end{aligned}
$$

Adding these two expressions yields

$$
\begin{aligned}
& \operatorname{Pr}(U \leq u, V-U \leq w)=\left(1-\exp \left\{-\left(\lambda_{1}+\lambda_{2}\right) u\right\}\right) p_{w}, \quad \text { where } \\
& p_{w}:=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\left(1-\exp \left(-\lambda_{2} w\right)\right)+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\left(1-\exp \left(-\lambda_{1} w\right)\right)
\end{aligned}
$$

The joint CDF splits into a product of factors $\operatorname{Pr}(U \leq u) \operatorname{Pr}(V-U \leq w)$ which proves independence. To interpret the second term, observe that $\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$ is the probability of the event $\left\{X_{1}<X_{2}\right\}$; and conditioned on this event, $V-U \sim$ Exponential $\left(\lambda_{2}\right)$ by the memoryless property.

Problem 4. Bonus: Random Telegraph Wave

Let $\left\{N_{t}, t \geq 0\right\}$ be a Poisson process with rate λ and define $X_{t}=X_{0}(-1)^{N_{t}}$ where $X_{0} \in\{0,1\}$ is a random variable independent of N_{t}.
(a) Does the process X_{t} have independent increments?
(b) Calculate $\operatorname{Pr}\left(X_{t}=1\right)$ if $\operatorname{Pr}\left(X_{0}=1\right)=p$.
(c) Assume that $p=0.5$. Calculate $\mathbb{E}\left[X_{t+s} X_{s}\right]$ for $s, t \geq 0$.

Solution 4. (a) No, the process does not have independent increments. According to the definition of independent increments, for any $0<t_{0}<t_{1}<t_{2}$, we should have $X_{t_{2}}-X_{t_{1}}$ is independent of $X_{t_{1}}-X_{t_{0}}$. However, suppose $X_{0}=1$ and $X_{t_{1}}-X_{t_{0}}=2$. This means that from t_{0} to t_{1}, X_{t} increases from -1 to 1 . Then it is impossible to have $X_{t_{2}}-X_{t_{1}}=2$ since $X_{t} \in\{-1,1\}$ for all $t>0$, when $X_{0}=1$.
(b) First we calculate $\operatorname{Pr}\left(N_{t}\right.$ is even $)$.

$$
\begin{aligned}
\operatorname{Pr}\left(N_{t} \text { is even }\right) & =\sum_{i=0, i \text { is even }}^{\infty} \frac{(\lambda t)^{i} \exp ^{-\lambda t}}{i!}=\frac{\exp ^{-\lambda t}}{2}\left(\sum_{i=0}^{\infty} \frac{(\lambda t)^{i}}{i!}+\sum_{i=0}^{\infty} \frac{(-\lambda t)^{i}}{i!}\right) \\
& =\frac{\exp ^{-\lambda t}}{2}\left(\exp ^{\lambda t}+\exp ^{-\lambda t}\right)=\frac{1+\exp ^{-2 \lambda t}}{2} . \\
& \operatorname{Pr}\left(X_{t}=1\right)=p \operatorname{Pr}\left(N_{t} \text { is even }\right)=p \frac{1+\exp ^{-2 \lambda t}}{2} .
\end{aligned}
$$

(c) If $X_{0}=0$, obviously there is $\mathbb{E}\left[X_{t+s} X_{s}\right]=0$ for all $s, t \geq 0$. For $X_{0}=1$, we have

$$
\begin{aligned}
\operatorname{Pr}\left(X_{t+s} X_{s}=1\right) & =\operatorname{Pr}\left(N_{t+s}-N_{s} \text { is even }\right)=\operatorname{Pr}\left(N_{t} \text { is even }\right) \\
& =\frac{1}{2}\left(1+\exp ^{-2 \lambda t}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Pr}\left(X_{t+s} X_{s}=-1\right) & =\operatorname{Pr}\left(N_{t+s}-N_{s} \text { is odd }\right)=\operatorname{Pr}\left(N_{t} \text { is odd }\right) \\
& =\frac{1}{2}\left(1-\exp ^{-2 \lambda t}\right) .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
\mathbb{E}\left[X_{t+s} X_{s}\right] & =\frac{1}{2} \mathbb{E}\left[X_{t+s} X_{s} \mid X_{0}=1\right] \\
& =\frac{1}{2}\left[\frac{1}{2}\left(1+\exp ^{-2 \lambda t}\right)-\frac{1}{2}\left(1-\exp ^{-2 \lambda t}\right)\right]=\frac{1}{2} \exp ^{-2 \lambda t} .
\end{aligned}
$$

