UC Berkeley Department of Electrical Engineering and Computer Sciences

EE126: PROBABILITY AND RANDOM PROCESSES

Discussion Section 9 Fall 2018

Problem 1. Poisson Practice

Let $(N(t), t \ge 0)$ be a Poisson process with rate λ . Let T_k denote the time of k-th arrival, for $k \in \mathbb{N}$, and given $0 \le s < t$, we write N(s,t) = N(t) - N(s). Compute:

- 1. $\mathbb{P}(N(1) + N(2, 4) + N(3, 5) = 0).$
- 2. $\mathbb{E}(N(1,3) \mid N(1,2) = 3).$
- 3. $\mathbb{E}(T_2 \mid N(2) = 1).$
- Solution 1. 1. The event $\{N(1) + N(2,4) + N(3,5) = 0\}$ is the same as the intersection of 2 events, $\{N(1) = 0\}$ and $\{N(2,5) = 0\}$. These are independent with probabilities $\exp(-\lambda)$ and $\exp(-3\lambda)$. Hence

$$\mathbb{P}[N(1) + N(2,4) + N(3,5) = 0] = \exp(-4\lambda).$$

- 2. N(1,3) = N(1,2) + N(2,3). We know N(2,3) is independent of N(1,2). Hence, $\mathbb{E}(N(1,3) \mid N(1,2) = 3) = 3 + \lambda$.
- 3. Since N(2) = 1, the second interarrival time T_2 hasn't lapsed yet at t = 2. From the memoryless property of the exponential distribution:

$$\mathbb{E}(T_2 - 2 \mid N(2) = 1) = \frac{1}{\lambda}.$$

Hence the answer is $2 + \lambda^{-1}$.

Problem 2. Customers in a Store

Consider two independent Poisson processes with rates λ_1 and λ_2 . Those processes measure the number of customers arriving in store 1 and 2.

- 1. What is the probability that a customer arrives in store 1 before any arrives in store 2?
- 2. What is the probability that in the first hour exactly 6 customers arrive, in total, at the two stores?
- 3. Given that exactly 6 have arrived, in total, at the two stores, what is the probability that exactly 4 went to store 1?

Solution 2. 1. Solution 1: Consider the sum of two processes which is a Poisson process with rate $\lambda_1 + \lambda_2$. You mark each customer in this process as 1 with probability $\lambda_1/(\lambda_1 + \lambda_2)$ and mark as 2 otherwise. The resulting two processes are Poisson processes of rates λ_1 and λ_2 . Thus, the probability of having the first customer going to store 1 is equal to the probability of marking the first customer as 1 which is

$$\frac{\lambda_1}{\lambda_1 + \lambda_2}.$$

Solution 2: The arrival times of the first customer of the two stores are $X \sim Exponential(\lambda_1)$ and $Y \sim Exponential(\lambda_2)$, respectively. Then using the total probability theorem we have that

$$\Pr(X < Y) = \int_0^\infty f_Y(y) \Pr(X < Y \mid Y = y) \, dy$$
$$= \int_0^\infty \lambda_2 \exp^{-\lambda_2 y} (1 - \exp^{-\lambda_1 y}) \, dy$$
$$= \frac{\lambda_1}{\lambda_1 + \lambda_2}.$$

2.

$$\frac{\exp^{-(\lambda_1+\lambda_2)}(\lambda_1+\lambda_2)^6}{6!}.$$

3.

$$\binom{6}{4} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^4 \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^2.$$

Problem 3. Minimum and Maximum of Exponentials

Let $\lambda_1, \lambda_2 > 0$, and $X_1 \sim Exponential(\lambda_1), X_2 \sim Exponential(\lambda_2)$ are independent. Also, define $U := \min(X_1, X_2)$ and $V := \max(X_1, X_2)$. Show that U and V - U are independent.

Solution 3. For u, w > 0,

$$\begin{aligned} \Pr(U &\leq u, V - U \leq w, X_1 < X_2) = \Pr(X_1 \leq u, X_1 < X_2 \leq X_1 + w) \\ &= \int_0^u \int_{x_1}^{x_1 + w} \lambda_2 \exp(-\lambda_2 x_2) \, dx_2 \, \lambda_1 \exp(-\lambda_1 x_1) \, dx_1 \\ &= \int_0^u \{ \exp(-\lambda_2 x_1) - \exp(-\lambda_2 (x_1 + w)) \} \lambda_1 \exp(-\lambda_1 x_1) \, dx_1 \\ &= (1 - \exp(-\lambda_2 w)) \int_0^u \lambda_1 \exp(-(\lambda_1 + \lambda_2) x_1) \, dx_1 \\ &= \frac{\lambda_1}{\lambda_1 + \lambda_2} (1 - \exp\{-(\lambda_1 + \lambda_2) u\}) (1 - \exp(-\lambda_2 w)). \end{aligned}$$

By symmetry, interchanging the roles of 1 and 2 yields

$$\Pr(U \le u, V - U \le w, X_2 < X_1)$$

= $\frac{\lambda_2}{\lambda_1 + \lambda_2} (1 - \exp\{-(\lambda_1 + \lambda_2)u\}) (1 - \exp(-\lambda_1 w)).$

Adding these two expressions yields

$$\Pr(U \le u, V - U \le w) = \left(1 - \exp\{-(\lambda_1 + \lambda_2)u\}\right)p_w, \quad \text{where}$$
$$p_w := \frac{\lambda_1}{\lambda_1 + \lambda_2} \left(1 - \exp(-\lambda_2 w)\right) + \frac{\lambda_2}{\lambda_1 + \lambda_2} \left(1 - \exp(-\lambda_1 w)\right).$$

The joint CDF splits into a product of factors $Pr(U \leq u) Pr(V - U \leq w)$ which proves independence. To interpret the second term, observe that $\lambda_1/(\lambda_1 + \lambda_2)$ is the probability of the event $\{X_1 < X_2\}$; and conditioned on this event, $V - U \sim$ *Exponential*(λ_2) by the memoryless property.

Problem 4. Bonus: Random Telegraph Wave

Let $\{N_t, t \ge 0\}$ be a Poisson process with rate λ and define $X_t = X_0(-1)^{N_t}$ where $X_0 \in \{0, 1\}$ is a random variable independent of N_t .

- (a) Does the process X_t have independent increments?
- (b) Calculate $Pr(X_t = 1)$ if $Pr(X_0 = 1) = p$.
- (c) Assume that p = 0.5. Calculate $\mathbb{E}[X_{t+s}X_s]$ for $s, t \ge 0$.
- Solution 4. (a) No, the process does not have independent increments. According to the definition of independent increments, for any $0 < t_0 < t_1 < t_2$, we should have $X_{t_2} X_{t_1}$ is independent of $X_{t_1} X_{t_0}$. However, suppose $X_0 = 1$ and $X_{t_1} X_{t_0} = 2$. This means that from t_0 to t_1 , X_t increases from -1 to 1. Then it is impossible to have $X_{t_2} X_{t_1} = 2$ since $X_t \in \{-1, 1\}$ for all t > 0, when $X_0 = 1$.
 - (b) First we calculate $Pr(N_t \text{ is even})$.

$$\begin{aligned} \Pr(N_t \text{ is even}) &= \sum_{i=0, i \text{ is even}}^{\infty} \frac{(\lambda t)^i \exp^{-\lambda t}}{i!} = \frac{\exp^{-\lambda t}}{2} \Big(\sum_{i=0}^{\infty} \frac{(\lambda t)^i}{i!} + \sum_{i=0}^{\infty} \frac{(-\lambda t)^i}{i!} \Big) \\ &= \frac{\exp^{-\lambda t}}{2} (\exp^{\lambda t} + \exp^{-\lambda t}) = \frac{1 + \exp^{-2\lambda t}}{2}. \end{aligned}$$
$$\begin{aligned} \Pr(X_t = 1) &= p \Pr(N_t \text{ is even}) = p \frac{1 + \exp^{-2\lambda t}}{2}. \end{aligned}$$

(c) If $X_0 = 0$, obviously there is $\mathbb{E}[X_{t+s}X_s] = 0$ for all $s, t \ge 0$. For $X_0 = 1$, we have

$$Pr(X_{t+s}X_s = 1) = Pr(N_{t+s} - N_s \text{ is even}) = Pr(N_t \text{ is even})$$
$$= \frac{1}{2}(1 + \exp^{-2\lambda t}),$$

and

$$\Pr(X_{t+s}X_s = -1) = \Pr(N_{t+s} - N_s \text{ is odd}) = \Pr(N_t \text{ is odd})$$
$$= \frac{1}{2}(1 - \exp^{-2\lambda t}).$$

Therefore, we get

$$\mathbb{E}[X_{t+s}X_s] = \frac{1}{2}\mathbb{E}[X_{t+s}X_s \mid X_0 = 1] \\ = \frac{1}{2} \Big[\frac{1}{2}(1 + \exp^{-2\lambda t}) - \frac{1}{2}(1 - \exp^{-2\lambda t}) \Big] = \frac{1}{2} \exp^{-2\lambda t}.$$