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Problem 1. Poisson Process MAP
Customers arrive to a store according to a Poisson process of rate 1. The store
manager learns of a rumor that one of the employees is sending 1/2 of the customers
to the rival store. Refer to hypothesis X = 1 as the rumor being true, that one of the
employees is sending every other customer arrival to the rival store and hypothesis
X = 0 as the rumor being false, where each hypothesis is equally likely. Assume that
at time 0, there is a successful sale. After that, the manager observes S1, S2, . . . , Sn
where n is a positive integer and Si is the time of the ith subsequent sale for
i = 1, . . . , n. Derive the MAP rule to determine whether the rumor was true or
not.

Problem 2. BSC: MLE & MAP
You are testing a digital link that corresponds to a BSC with some error probability
ε ∈ [0, 0.5].

(a) Assume you observe the input and the output of the link. How do you find
the MLE of ε?

(b) You are told that the inputs are i.i.d. bits that are equal to 1 with probability
0.6 and to 0 with probability 0.4. You observe n outputs (n is a positive
integer). How do you calculate the MLE of ε?

(c) The situation is as in the previous case, but you are told that ε has PDF 4−8x
on [0, 0.5). How do you calculate the MAP of ε given n outputs?

Problem 3. Bayesian Estimation of Exponential Distribution
We have already learned about MLE (non-Bayesian perspective) and MAP (Bayesian
perspective). In this problem, we will introduce the fully Bayesian approach to sta-
tistical estimation.
Suppose that X is an exponential random variable with unknown rate Λ (Λ is a
random variable). As a Bayesian practitioner, you have a prior belief that Λ is
equally likely to be λ1 or λ2.
You collect one sample X1 from X.

1. Find the posterior distribution Pr(Λ = λ1 | X1 = x1).
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2. If we were using the MLE or MAP rule, then we would choose a single value
λ for Λ; this is sometimes called a point estimate. This amounts to saying X
has the exponential distribution with rate λ.

In the Bayesian approach, we will not use a point estimate. Instead, we will
keep the full information of the posterior distribution of Λ, and we compute
the distribution of X as

fX(x) =
∑

λ∈{λ1,λ2}

fX|Λ(x | λ) Pr(Λ = λ | X1 = x1).

Notice that in the Bayesian approach, we do not necessarily have an exponen-
tial distribution for X anymore. Compute fX(x) in closed-form.

3. You might guess from the previous part that the fully Bayesian approach is
often computationally intractable. This is one of the main reasons why point
estimates are common in practice.

Compute the MAP estimate for Λ and calculate fX(x) again using the MAP
rule.

Problem 4. Voltage MAP
You are trying to detect whether voltage V1 or voltage V2 was sent over a channel
with independent Gaussian noise Z ∼ N(V3, σ

2). Assume that both voltages are
equally likely to be sent.

(a) Derive the MAP detector for this channel.

(b) Using the Gaussian Q-function, determine the average error probability for
the MAP detector.

(c) Suppose that the average transmit energy is (V 2
1 +V 2

2 )/2 and that the average
transmit energy is constrained such that it cannot be more than E > 0. What
voltage levels V1, V2 should you choose to meet this energy constraint but still
minimize the average error probability?

Problem 5. Bonus: Linear Regression
Suppose f : Rd → R is an unknown linear function, i.e. it is of the form f(x) =
x>w = x1w1 + · · · + xdwd, where w ∈ Rd is the unknown parameter of the linear
function. We pick n points x(1), . . . , x(n) ∈ Rd, and we observe y(1), . . . , y(n) ∈ R
that are generated according to the model

y(i) = f
(
x(i)
)
+εi, for i = 1, . . . , n,

where ε1, . . . , εn are i.i.d. N (0, σ2) random variables.
Let us first estimate w when we have no prior information about it.

1. Compute the likelihood of the parameter w given the data {(x(i), y(i))}ni=1

L(w | {(x(i), y(i))}ni=1) :=
n∏
i=1

p
(
y(i)

∣∣ x(i);w
)
.
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2. Explicitly define a matrix X ∈ Rn×d and a vector y ∈ Rn such that the optimal
points of the problem

min
w∈Rd

‖Xw − y‖22,

correspond to the maximizers of the likelihood.

Now assume a zero-mean Gaussian prior for each wi, i = 1, . . . , d. In particular
assume that w1, . . . , wd are i.i.d. N (0, τ2), and they are also independent of the data.

3. Compute, up to a normalization constant, the posterior distribution of w given
the data {(x(i), y(i))}ni=1.

4. Explicitly define a matrix X ∈ Rn×d, a vector y ∈ Rn and a positive scalar
λ ∈ R such that the optimal point of the problem

min
w∈Rd

‖Xw − y‖22 + λ‖w‖22,

correspond to the maximizer of the posterior distribution of w.
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