UC Berkeley
 Department of Electrical Engineering and Computer Sciences

EE126: Probability and Random Processes

Problem Set 13

Fall 2018

Issued: Thursday, November 15, 2018
Due: Wednesday, November 21, 2018

Problem 1. Geometric MMSE

Let N be a geometric random variable with parameter $1-p$, and $\left(X_{i}\right)_{i \in \mathbb{N}}$ be i.i.d. exponential random variables with parameter λ. Let $T=X_{1}+\cdots+X_{N}$. Compute the LLSE and MMSE of N given T.

Problem 2. Property of MMSE

Let X, Y_{1}, \ldots, Y_{n} be square integrable random variables. Argue that

$$
\mathbb{E}\left[\left(X-\mathbb{E}\left[X \mid Y_{1}, \ldots, Y_{n}\right]\right)^{2}\right] \leq \mathbb{E}\left[\left(X-\sum_{i=1}^{n} \mathbb{E}\left[X \mid Y_{i}\right]\right)^{2}\right]
$$

Problem 3. Gaussian Random Vector MMSE

Let

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\right)
$$

be a Gaussian random vector.
Let

$$
W= \begin{cases}1, & \text { if } Y>0 \\ 0, & \text { if } Y=0 \\ -1, & \text { if } Y<0\end{cases}
$$

be the sign of Y. Find $\mathbb{E}[W X \mid Y]$.

Problem 4. Gaussian Estimation
Let $Y=X+Z$ and $U=X-Z$, where X and Z are i.i.d. $\mathcal{N}(0,1)$.
(a) Find the joint distribution of U and Y.
(b) Find the MMSE of X given the observation Y, call this $\hat{X}(Y)$.
(c) Let the estimation error $E=X-\hat{X}(Y)$. Find the conditional distribution of E given Y.

Problem 5. Stochastic Linear System MMSE

Let $\left(V_{n}, n \in \mathbb{N}\right)$ be i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ and independent of $X_{0}=\mathcal{N}\left(0, u^{2}\right)$. Let $|a|<1$. Define

$$
X_{n+1}=a X_{n}+V_{n}, \quad n \in \mathbb{N}
$$

1. What is the distribution of X_{n}, where n is a positive integer?
2. Find $\mathbb{E}\left[X_{n+m} \mid X_{n}\right]$ for $m, n \in \mathbb{N}, m \geq 1$.
3. Find u so that the distribution of X_{n} is the same for all $n \in \mathbb{N}$.

Problem 6. Noisy Guessing

Let X, Y, and Z be i.i.d. with the standard Gaussian distribution. Find $\mathbb{E}[X \mid$ $X+Y, X+Z, Y-Z]$.
Hint: Argue that the observation $Y-Z$ is redundant.

Problem 7. Bonus: Projections in Hilbert Space

The following exercises are from the note on the Hilbert space of random variables. See the notes for some hints.

1. Let $\mathcal{H}:=\left\{X: X\right.$ is a real-valued random variable with $\left.\mathbb{E}\left[X^{2}\right]<\infty\right\}$. Prove that $\langle X, Y\rangle:=\mathbb{E}[X Y]$ makes \mathcal{H} into a real inner product space.
2. Let U be a subspace of a real inner product space V and let P be the projection map onto U. Prove that P is a linear transformation.
3. Suppose that U is finite-dimensional, $n:=\operatorname{dim} U$, with basis $\left\{v_{i}\right\}_{i=1}^{n}$. Suppose that the basis is orthonormal. Show that $P y=\sum_{i=1}^{n}\left\langle y, v_{i}\right\rangle v_{i}$. (Note: If we take $U=\mathbb{R}^{n}$ with the standard inner product, then P can be represented as a matrix in the form $P=\sum_{i=1}^{n} v_{i} v_{i}^{T}$.)
