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Problem 1. Kalman Filter
Assume that the following dynamics are given, for n ∈ N,

X(n+ 1) = AX(n) + V (n),

Y (n) = X(n) +W (n).

Y is the observation. V and W are independent Gaussian noise variables with mean
zero and variance σ2V and σ2W respectively.

1. Write down the Kalman filter recursive equations for this system.

2. Let k be a positive integer. Compute the prediction E(X(n+k) | Y (n)), where
Y (n) is the history of the observations Y0, . . . , Yn, in terms of the estimate
X̂(n) := E(X(n) | Y (n)).

3. Now let k = 1 and compute the smoothing estimate E(X(n) | Y (n+1)) in terms
of the quantities that appear in the Kalman filter equation.

Hint: Use the law of total expectation

E
(
X(n)

∣∣ Y (n+1)
)

= E
[
E
(
X(n)

∣∣ X(n+ 1), Y (n+1)
) ∣∣ Y (n+1)

]
,

as well as the innovation

X̃(n+ 1) := X(n+ 1)− L[X(n+ 1) | Y (n)].

Problem 2. Hidden Markov Models
Figure 1 shows the life of Sinho. Some days he is Tired and some days he is Energetic.
But he doesn’t tell you whether he’s Tired or not, and all you can observe is whether
he Jumps, Eats, Runs, or Sleeps. We start on day 1 in the Energetic state and there
is one transition per day.
For the questions below, we use the following notations:

• qt: state on day t

• Ot: observation on day t

1. What is Pr(q2 = Energetic | O2 = Eat)?
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2. What is Pr(O3 = Sleep | O2 = Eat)?

Problem 3. Most Likely Sequence of States
In this problem, we give an example of an HMM and a sequence of observations
which demonstrates that the most likely sequence of hidden states (i.e., the output
of the Viterbi algorithm) is not the same as computing the most likely state at each
time. Your task is to verify that the following example works:
Consider a HMM with two states {0, 1} and the hidden state is observed through a
BSC with error probability 1/3. The hidden state transitions according to P (0, 0) =
P (1, 1) = 3/4. Assume that the initial state is equally likely to be 0 or 1. We see
the observation 0 at time 0 and 1 at time 1.

Problem 4. (Bonus) Error of the Kalman Filter for a Linear Stochastic
System
The linear stochastic system[

X1,k+1

X2,k+1

]
=

[
2 1
1 2

] [
X1,k

X2,k

]
+

[
1
−1

]
wk, k ≥ 0,

starts from an arbitrary (known) initial condition

[
x1,0
x2,0

]
and the system noise vari-

ables (wk, k ≥ 0) are i.i.d. normal with mean 0 and variance 1.
The state variables are not directly observable. However, we can observe

Yk = X1,k +X2,k, k ≥ 0.

Let X̂k|k denote the minimum mean square error estimator of Xk =

[
X1,k

X2,k

]
given

(Y0, . . . , Yk). Determine the asymptotic behavior of the covariance matrix of the
estimation error.
Note: This problem needs thought. Note that there is no observation noise, so the
assumption used in the derivation of the Kalman filter equations, that the covariance
matrix of the observation noise is positive definite, is no longer valid.

Problem 5. (Bonus) EM for Censored Exponential Data
A common application of the EM algorithm is for censored data in statistics.
Let n be a fixed positive integer denoting the sample size; let X1, . . . , Xn be i.i.d.
Exponential(λ) random variables; let c1, . . . , cn be known positive constants, and
suppose that we observe Yi := 1{Xi > ci} for each i = 1, . . . , n. In other words,
we do not get to observe the actual values of X1, . . . , Xn. We only get to observe
whether the ith data point is greater than the level ci. We would like to find
the MLE for the rate λ. If we knew the values of X1, . . . , Xn, then we would use
λ̂ := n/(

∑n
i=1Xi).

Applying the EM algorithm to the following problem, we will alternate between the
following steps. First, initialize a guess λ̂(0). Then, for t = 0, 1, 2, . . . :
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• E step: Compute X̄(t) := Eλ̂(t) [n
−1∑n

i=1Xi | Y1, . . . , Yn], where the notation
Eλ̂(t) means you should calculate the expectation as if

X1, . . . , Xn
i.i.d.∼ Exponential(λ̂(t)).

• M step: The next estimate of the parameter is λ̂(t+1) := 1/X̄(t).

(Do not worry about why the E and M steps look the way they do.)

1. Verify that the MLE estimate of λ given X1, . . . , Xn is λ̂ = n/(
∑n

i=1Xi).

2. Explicitly write out what the E step looks like.

3. Write out the joint PMF for the observations Y1, . . . , Yn. Is it possible to find
the MLE for λ given Y1, . . . , Yn directly?
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Figure 1: HMM model for Sinho.
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