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Problem 1. Packet Routing
Consider a system with n inputs and n outputs. At each input, a packet appears
independently with probability p. If a packet appears, it is destined for one of the
n outputs uniformly randomly, independently of the other packets.

1. Let X denote the number of packets destined for the first output. What is the
distribution of X?

2. What is the probability of a collision, that is, more than one packet heading
to the same output?

Problem 2. Compact Arrays
Consider an array of n entries, where n is a positive integer. Each entry is chosen
uniformly randomly from {0, . . . , 9}. We want to make the array more compact, by
putting all of the non-zero entries together at the front of the array. As an example,
suppose we have the array

[6, 4, 0, 0, 5, 3, 0, 5, 1, 3].

After making the array compact, it now looks like

[6, 4, 5, 3, 5, 1, 3, 0, 0, 0].

Let i be a fixed positive integer in {1, . . . , n}. Suppose that the ith entry of the
array is non-zero (assume that the array is indexed starting from 1). Let X be a
random variable which is equal to the index that the ith entry has been moved after
making the array compact. Calculate E[X] and Var(X).

Problem 3. Message Segmentation
The number of bytes N in a message has a geometric distribution with parameter
p. Suppose that the message is segmented into packets, with each packet containing
m bytes if possible, and any remaining bytes being put in the last packet. Let Q
denote the number of full packets in the message, and let R denote the number of
bytes left over.

1. Find the joint PMF of Q and R. Pay attention on the support of the joint
PMF.

2. Find the marginal PMFs of Q and R.
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Figure 1: The channel model for the BEC showing a mapping from channel input
X to channel output Y . The probability of erasure is pe.

3. Repeat part (b), given that we know that N > m.

Note: you can use the formulas

n∑
k=0

ak =
1− an+1

1− a
, for a 6= 1

∞∑
k=0

xk =
1

1− x
, for |x| < 1

in order to simplify your answer.

Problem 4. Introduction to Information Theory
Define the entropy of a discrete random variable X to be

H(X)
∆
= −

∑
x

p(x) log p(x) = −E[log p(X)],

where p(·) is the PMF of X. Here, the logarithm is taken with base 2, and entropy
is measured in bits.

1. Prove that H(X) ≥ 0.

2. Entropy is often described as the average information content of a random
variable. If H(X) = 0, then no new information is given by observing X. On
the other hand, if H(X) = m, then observing the value of X gives you m bits
of information on average.

Let X be a Bernoulli random variable with Pr(X = 1) = p. Would you expect
H(X) to be greater when p = 1/2 or when p = 1/3? Calculate H(X) in both
of these cases and verify your answer.

3. We now consider a binary erasure channel (BEC).

The input X is a Bernoulli random variable with Pr(X = 0) = Pr(X = 1) =
1/2. Each time that we use the channel the input X will either get get erased
with probability pe, or it will get transmitted correctly with probability 1−pe.
Using the character “?” to denote erasures, the output Y of the channel can
be written as

Y =

{
X, with probability 1− pe

?, with probability pe.

Compute H(Y ).
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4. We defined the entropy of a single random variable as a measure of the uncer-
tainty inherent in the distribution of the random variable. We now extend this
definition for a pair of random variables (X,Y ), but there is nothing really
new in this definition because the pair (X,Y ) can be considered to be a single
vector-valued random variable. Define the joint entropy of a pair of discrete
random variables (X,Y ) to be

H(X,Y )
∆
= −E[log p(X,Y )],

where p(·, ·) is the joint PMF and the expectation is also taken over the joint
distribution of X and Y .

Compute H(X,Y ), for the BEC. [Later, we will discuss how information-
theoretic quantities such as H(X,Y ) are fundamentally related to the maxi-
mum rate at which it is possible to send information across the channel.]

Problem 5. Soliton Distribution
This question pertains to the fountain codes introduced in the lab.
Say that you wish to send n chunks of a message, X1, . . . , Xn, across a channel,
but alas the channel is a packet erasure channel: each of the packets you send is
erased with probability pe > 0. Instead of sending the n chunks directly through the
channel, we will instead send n packets through the channel, call them Y1, . . . , Yn.
How do we choose the packets Y1, . . . , Yn? Let p(·) be a probability distribution on
{1, . . . , n}; this represents the degree distribution of the packets.

(i) For i = 1, . . . , n, pick Di (a random variable) according to the distribution
p(·). Then, choose Di random chunks among X1, . . . , Xn, and “assign” Yi to
the Di chosen chunks.

(ii) For i = 1, . . . , n, let Yi be the XOR of all of the chunks assigned for Yi (the
number of chunks assigned for Yi is called the degree of Yi).

(iii) Send each Yi across the channel, along with metadata which describes which
chunks were assigned to Yi.

The receiver on the other side of the channel receives the packets Y1, . . . , Yn (for
simplicity, assume that no packets are erased by the channel; in this problem, we
are just trying to understand what we should do in the ideal situation of no channel
noise), and decoding proceeds as follows:

(i) If there is a received packet Y with only one assigned chunk Xj , then set
Xj = Y . Then, “peel off” Xj : for all packets Yi that Xj is assigned to, replace
Yi with Yi XOR Xj . Remove Y and Xj (notice that this may create new
degree-one packets, which allows decoding to continue).

(ii) Repeat the above step until all chunks have been decoded, or there are no
remaining degree-one packets (in which case we declare failure).

In the lab, you will play around with the algorithm and watch it in action. Here,
our goal is to work out what a good degree distribution p(·) is.
Intuitively, a good degree distribution needs to occasionally have prolific packets
that have high degree; this is to ensure that all packets are connected to at least
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one chunk. However, we need “most” of the packets to have low degree to make
decoding easier. Ideally, we would like to choose p(·) such that at each step of the
algorithm, there is exactly one degree-one packet.

1. Suppose that when k chunks have been recovered (k = 0, 1, . . . , N − 1), then
the expected number of packets of degree d (for d > 1) is fk(d). What is the
expected number of packets of degree d whose degrees are reduced by one after
the (k + 1)st chunk is peeled off?

2. Assuming that at each step of the algorithm, there is exactly one degree–one
packet, show that fk+1(1) = fk(2).2/(N − k) for k = 0, 1, . . . , N − 1.

3. We want fk(1) = 1 for all k = 0, 1, . . . , n − 1. Show that in order for this
to hold, then for all d = 2, . . . , n we have fk(d) = (n − k)/[d(d − 1)]. From
this, deduce what p(d) must be, for d = 1, . . . , n− k. (This is called the ideal
soliton distribution.)

[Hint : Your answer to (1) should give you a recurrence between fk(d), fk(d+1),
and fk+1(d).]

4. Find the expectation of the distribution p(·).

In practice, the ideal soliton distribution does not perform very well because it is
not enough to design the distribution to work well in expectation.
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