UC Berkeley Department of Electrical Engineering and Computer Sciences

EE126: PROBABILITY AND RANDOM PROCESSES

Problem Set 4 Fall 2018

Problem 1. Poisson Bounds

Let X be the sum of 20 i.i.d. Poisson random variables X_1, \ldots, X_{20} with $\mathbb{E}[X_1] = 1$. Use Markov's Inequality and Chebyshev's Inequality to find an upper bound of $\Pr(X \geq 26)$.

Problem 2. Convergence of Exponentials

Let X_1, X_2, \ldots be i.i.d. $\text{Exp}(\lambda)$ random variables. Show that

$$\frac{X_n}{\ln n} \to 0$$
 in probability as $n \to \infty$.

Problem 3. Transform Practice

Consider a random variable Z with transform

$$M_Z(s) = \frac{a - 3s}{s^2 - 6s + 8},$$
 for $|s| < 2$.

Calculate the following quantities:

- 1. The numerical value of the parameter a.
- 2. $\mathbb{E}[Z]$.
- 3. Var(Z).