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Problem 1. Midterm
Solve all of the problems on the midterm again (including the ones you got correct).

Problem 2. Revisiting Facts Using Transforms

1. Let X ∼ Poisson(λ), Y ∼ Poisson(µ) be independent. Calculate the MGF
of X + Y and use this to show that X + Y ∼ Poisson(λ+ µ).

2. Calculate the MGF of X ∼ Exponential(λ) and use this to find all of the
moments of X.

3. Repeat the above part, but for X ∼ N (0, 1).

Problem 3. Almost Sure Convergence
In this question, we will explore almost sure convergence and compare it to conver-
gence in probability. Recall that a sequence of random variables (Xn)n∈N converges
almost surely (abbreviated a.s.) to X if Pr(limn→∞Xn = X) = 1.

1. Suppose that, with probability 1, the sequence (Xn)n∈N oscillates between two
values a 6= b infinitely often. Is this enough to prove that (Xn)n∈N does not
converge almost surely? Justify your answer.

2. Suppose that Y is uniform on [−1, 1], and Xn has distribution

Pr
(
Xn = (y + n−1)−1

∣∣ Y = y
)

= 1.

Does (Xn)∞n=1 converge a.s.?

3. Define random variables (Xn)n∈N in the following way: first, set each Xn to
0. Then, for each k ∈ N, pick j uniformly randomly in {2k, . . . , 2k+1 − 1} and
set Xj = 2k. Does the sequence (Xn)n∈N converge a.s.?

4. Does the sequence (Xn)n∈N from the previous part converge in probability to
some X? If so, is it true that E[Xn]→ E[X] as n→∞?
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Problem 4. Confidence Interval Comparisons
In order to estimate the probability of a head in a coin flip, p, you flip a coin n
times, where n is a positive integer, and count the number of heads, Sn. You use
the estimator p̂ = Sn/n.

(a) You choose the sample size n to have a guarantee

Pr(|p̂− p| ≥ ε) ≤ δ.

Using Chebyshev Inequality, determine n with the following parameters:

(i) Compare the value of n when ε = 0.05, δ = 0.1 to the value of n when
ε = 0.1, δ = 0.1.

(ii) Compare the value of n when ε = 0.1, δ = 0.05 to the value of n when
ε = 0.1, δ = 0.1.

(b) Now, we change the scenario slightly. You know that p ∈ (0.4, 0.6) and would
now like to determine the smallest n such that

Pr
( |p̂− p|

p
≤ 0.05

)
≥ 0.95.

Use the CLT to find the value of n that you should use.

Problem 5. A Chernoff Bound for the Sum of Coin Flips
Let X1, . . . , Xn be i.i.d. Bernoulli(q) random variables with bias q ∈ (0, 1), and call
X their sum, X = X1 + · · · + Xn, which a Binomial(n, q) random variable, with
mean E[X] = nq.

1. Let ε > 0 such that q + ε < 1, and define p = q + ε. Show that for any t > 0,

Pr(X ≥ pn) ≤ exp
(
−n(tp− lnE[exptX1 ])

)
.

2. The Kullback-Leibler divergence from the distribution Bernoulli(q) to the dis-
tribution Bernoulli(p), is defined as

D(p ‖ q) ∆
= p ln

p

q
+ (1− p) ln

1− p
1− q

.

The Kullback-Leibler divergence can be interpreted as a measure of how close
the two distributions are. One motivation for this interpretation is that the
Kullback-Leibler divergence is always nonnegative, i.e. D(p ‖ q) ≥ 0, and
D(p ‖ q) = 0 if and only if p = q. So it can be thought of as a ‘distance’
between the two Bernoulli distributions.

Optimize the previous bound over t > 0 and deduce that

Pr(X ≥ pn) ≤ exp−nD(p ‖ q) .
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3. Moreover, the Kullback-Leibler divergence is related to the square distance
between the parameters p and q via the following inequality

D(p ‖ q) ≥ 2(p− q)2, for p, q ∈ (0, 1).

Use this inequality in order to deduce that

Pr
(
X ≥ (q + ε)n

)
≤ exp−2nε2 ,

and
Pr

(
X ≤ (q − ε)n

)
≤ exp−2nε2 .

Hint: For the second bound use symmetry in order to avoid doing all the work
again.

4. Conclude that
Pr(|X − qn| ≥ εn) ≤ 2 exp−2nε2 .

Problem 6. Please complete the feedback form posted in Piazza.
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