UC Berkeley
 Department of Electrical Engineering and Computer Sciences

EE126: Probability and Random Processes

Problem Set 5

Fall 2018

Issued: Thursday, September 20, 2018
Due: Wednesday, September 26, 2018

Problem 1. Midterm

Solve all of the problems on the midterm again (including the ones you got correct).

Problem 2. Revisiting Facts Using Transforms

1. Let $X \sim \operatorname{Poisson}(\lambda), Y \sim \operatorname{Poisson}(\mu)$ be independent. Calculate the MGF of $X+Y$ and use this to show that $X+Y \sim \operatorname{Poisson}(\lambda+\mu)$.
2. Calculate the MGF of $X \sim$ Exponential (λ) and use this to find all of the moments of X.
3. Repeat the above part, but for $X \sim \mathcal{N}(0,1)$.

Problem 3. Almost Sure Convergence

In this question, we will explore almost sure convergence and compare it to convergence in probability. Recall that a sequence of random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ converges almost surely (abbreviated a.s.) to X if $\operatorname{Pr}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1$.

1. Suppose that, with probability 1 , the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ oscillates between two values $a \neq b$ infinitely often. Is this enough to prove that $\left(X_{n}\right)_{n \in \mathbb{N}}$ does not converge almost surely? Justify your answer.
2. Suppose that Y is uniform on $[-1,1]$, and X_{n} has distribution

$$
\operatorname{Pr}\left(X_{n}=\left(y+n^{-1}\right)^{-1} \mid Y=y\right)=1
$$

Does $\left(X_{n}\right)_{n=1}^{\infty}$ converge a.s.?
3. Define random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ in the following way: first, set each X_{n} to 0 . Then, for each $k \in \mathbb{N}$, pick j uniformly randomly in $\left\{2^{k}, \ldots, 2^{k+1}-1\right\}$ and set $X_{j}=2^{k}$. Does the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ converge a.s.?
4. Does the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ from the previous part converge in probability to some X ? If so, is it true that $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$ as $n \rightarrow \infty$?

Problem 4. Confidence Interval Comparisons

In order to estimate the probability of a head in a coin flip, p, you flip a coin n times, where n is a positive integer, and count the number of heads, S_{n}. You use the estimator $\hat{p}=S_{n} / n$.
(a) You choose the sample size n to have a guarantee

$$
\operatorname{Pr}(|\hat{p}-p| \geq \epsilon) \leq \delta
$$

Using Chebyshev Inequality, determine n with the following parameters:
(i) Compare the value of n when $\epsilon=0.05, \delta=0.1$ to the value of n when $\epsilon=0.1, \delta=0.1$.
(ii) Compare the value of n when $\epsilon=0.1, \delta=0.05$ to the value of n when $\epsilon=0.1, \delta=0.1$.
(b) Now, we change the scenario slightly. You know that $p \in(0.4,0.6)$ and would now like to determine the smallest n such that

$$
\operatorname{Pr}\left(\frac{|\hat{p}-p|}{p} \leq 0.05\right) \geq 0.95
$$

Use the CLT to find the value of n that you should use.

Problem 5. A Chernoff Bound for the Sum of Coin Flips

Let X_{1}, \ldots, X_{n} be i.i.d. Bernoulli(q) random variables with bias $q \in(0,1)$, and call X their sum, $X=X_{1}+\cdots+X_{n}$, which a $\operatorname{Binomial}(n, q)$ random variable, with mean $\mathbb{E}[X]=n q$.

1. Let $\epsilon>0$ such that $q+\epsilon<1$, and define $p=q+\epsilon$. Show that for any $t>0$,

$$
\operatorname{Pr}(X \geq p n) \leq \exp \left(-n\left(t p-\ln \mathbb{E}\left[\exp ^{t X_{1}}\right]\right)\right)
$$

2. The Kullback-Leibler divergence from the distribution Bernoulli (q) to the distribution Bernoulli(p), is defined as

$$
D(p \| q) \triangleq p \ln \frac{p}{q}+(1-p) \ln \frac{1-p}{1-q} .
$$

The Kullback-Leibler divergence can be interpreted as a measure of how close the two distributions are. One motivation for this interpretation is that the Kullback-Leibler divergence is always nonnegative, i.e. $D(p \| q) \geq 0$, and $D(p \| q)=0$ if and only if $p=q$. So it can be thought of as a 'distance’ between the two Bernoulli distributions.
Optimize the previous bound over $t>0$ and deduce that

$$
\operatorname{Pr}(X \geq p n) \leq \exp ^{-n D(p \| q)} .
$$

3. Moreover, the Kullback-Leibler divergence is related to the square distance between the parameters p and q via the following inequality

$$
D(p \| q) \geq 2(p-q)^{2}, \quad \text { for } p, q \in(0,1)
$$

Use this inequality in order to deduce that

$$
\operatorname{Pr}(X \geq(q+\epsilon) n) \leq \exp ^{-2 n \epsilon^{2}}
$$

and

$$
\operatorname{Pr}(X \leq(q-\epsilon) n) \leq \exp ^{-2 n \epsilon^{2}} .
$$

Hint: For the second bound use symmetry in order to avoid doing all the work again.
4. Conclude that

$$
\operatorname{Pr}(|X-q n| \geq \epsilon n) \leq 2 \exp ^{-2 n \epsilon^{2}}
$$

Problem 6. Please complete the feedback form posted in Piazza.

