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Problem 1. Backwards Markov Property
Let (Xn)n∈N be a Markov chain with state space S. Show that for every m, k ∈ N,
with m ≥ 1, we have

Pr(Xk = i0 | Xk+1 = i1, . . . , Xk+m = im) = Pr(Xk = i0 | Xk+1 = i1),

for all states i0, i1, . . . , im ∈ S.

Problem 2. Reducible Markov Chain
Consider the following Markov chain, for α, β, p, q ∈ (0, 1).
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1. What are all of the communicating classes? (Two nodes x and y are said to
belong to the same communicating class if x can reach y and y can reach x
through paths of positive probability.) For each communicating class, classify
it as recurrent or transient.

2. Given that we start in state 2, what is the probability that we will reach state
0 before state 5?

3. What are all of the possible stationary distributions of this chain? (Note that
there is more than one.)

4. Suppose we start in the initial distribution π0 :=
[
0 0 γ 1− γ 0 0

]
for

some γ ∈ [0, 1]. Does the distribution of the chain converge, and if so, to
what?

Problem 3. Fly on a Graph
A fly wanders around on a graph G with vertices V = {1, . . . , 5}, shown in Figure
1.
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Figure 1: A fly wanders randomly on a graph.
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Figure 2: Part (a)

(a) Suppose that the fly wanders as follows: if it is at node i at time n, then it
chooses one of its neighbors j of i uniformly at random, and then wanders to
node j at time n+ 1. For times n = 0, 1, 2, . . ., let Xn be the fly’s position at
time n. Argue that {Xn, n ∈ N} is a Markov chain, and find the invariant
distribution.

(b) Now for the process in part (a), suppose that the (not-to-be-named) professor
sits at node 2 reading a heavy book. The professor is very fat, so he/she
doesn’t move at all, but will drop the book on the fly if it reaches node 2
(killing it instantly). On the other hand, node 5 is a window that lets the
fly escape. What is the probability that the fly escapes through the window
supposing that it starts at node 1?

(c) Now suppose that the fly wanders as follows: when it is at node i at time
n, it chooses uniformly from all neighbors of node i except for the one that
it just came from. For times n = 0, 1, 2, . . ., let Yn be the fly’s position at
time n. Is this new process {Yn, n ∈ N} a Markov chain? If it is, write down
the probability transition matrix; if not, explain why it does not satisfy the
definition of Markov chains.

Problem 4. Twitch Plays Pokemon
After attending an EECS 126 lecture, you went back home and started playing
Twitch Plays Pokemon. Suddenly, you realized that you may be able to analyze
Twitch Plays Pokemon.

1. The player in the top left corner performs a random walk on the 8 checkered
squares and the square containing the stairs. At every step the player is
equally likely to move to any of the squares in the four cardinal directions
(North, West, East, South) if there is a square in that direction. Find the
expected number of moves until the player reaches the stairs in Figure 4.

2. The player randomly walks in the same way as in the previous part. Find
the probability that the player reaches the stairs in the bottom right corner
in Figure 1.
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Figure 3: Part (b)

Problem 5. Metropolis-Hastings Algorithm
In this problem we introduce the Metropolis-Hastings Algorithm, which is an
example of Markov Chain Monte Carlo (MCMC) sampling. In the lab this
week, you will implement Metropolis-Hastings and explore its performance.
Suppose that π is a probability distribution on a finite set X . Assume that we can
compute π up to a normalizing constant. Specifically, assume that we can efficiently
calculate π̃(x) for any x ∈ X , where π(x) = π̃(x)/

∑
x′∈X π̃(x′). The normalizing

constant 1/
∑

x′∈X π̃(x′) is called the partition function in some contexts, and it
can be difficult to compute if X is very large.
Instead of computing π directly, we will use π̃ to design an algorithm to sample from
the distribution π. We can then approximate π if we take enough samples. The idea
behind MCMC methods is to design a Markov chain whose stationary distribution
is π; then, we can “run” the chain until it is close to stationarity, and then collect
samples from the chain.
Initialize the chain with X0 = x0, where x0 is picked arbitrarily from X . Let
f : X × X → [0, 1] be a proposal distribution: for each x ∈ X , f(x, ·) is a
probability distribution on X . (In the lab, you will look at what the desirable
properties of a proposal distribution are.) If the chain is at state x ∈ X , the chain
makes a transition according to the following rule:

• Propose the next state y according to the distribution f(x, ·).

• Accept the proposal with probability

A(x, y) = min
{

1,
π(y)

π(x)

f(y, x)

f(x, y)

}
.

• If the proposal is accepted, then move the chain to y; otherwise, stay at x.

Assume that the proposal distribution f is chosen to make the chain irreducible.

1. Explain why the Markov chain can be simulated efficiently, even though π
cannot be computed efficiently.

2. The key to showing why Metropolis-Hastings works is to look at the detailed
balance equations. Suppose we have a finite irreducible Markov chain on a
state space X with transition matrix P . Show that if there exists a distribution
π on X such that for all x, y ∈ X ,

π(x)P (x, y) = π(y)P (y, x),

then π is the stationary distribution of the chain. If these equations hold, then
the Markov chain is called reversible because it turns out that the equations
imply that the chain looks the same going forwards as backwards.
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3. Now return to the Metropolis-Hastings chain. Use detailed balance to argue
that π is the stationary distribution of the chain.

4. If the chain is aperiodic, then the chain will converge to the stationary dis-
tribution. If the chain is not aperiodic, we can force it to be aperiodic by
considering the lazy chain: on each transition, the chain decides not to move
with probability 1/2 (independently of the propose-accept step). Explain why
the lazy chain is aperiodic, and explain why the stationary distribution is the
same as before.
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