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Problem 1. Shannon Code
Consider the following method for generating a code for a random variable X that
takes on m values {1, 2, . . . ,m} with probabilities p1, . . . , pm. Assume that the
probabilities are ordered so that p1 ≥ p2 ≥ · · · ≥ pm > 0. Define

Fi =
i−1∑
k=1

pk,

to be the sum of the probabilities of all symbols less than i, and F1 = 0. Then,
in order to construct the codeword for i, which we denoted by f(i), we consider
the binary expansion of Fi ∈ [0, 1), and round it off to li bits, where li = dlog2

1
pi
e.

Here, we do not allow the binary expansions to end with infinitely many ones, e.g.
we write 1/2 in binary as 0.1 not 0.0111 . . . .

1. Construct the code for the probability distribution (0.5, 0.25, 0.125, 0.125).

2. Show that this code is prefix–free, that is, if i 6= j are two different symbols,
then their corresponding codewords are not prefix of each other, i.e. f(i) is
not a prefix of f(j).

Hint: show that if u, v ∈ [0, 1) are such that |u− v| ≥ 2−l, then the first l bits
of the binary representation of u and v can not be the same.

3. If L denotes the average codeword length, show that

H(X) ≤ L < H(X) + 1.

4. Assume that X1, X2, . . . are i.i.d. copies of X. Note that for each n ≥ 1, we
can treat the block X1, . . . , Xn as one random variable taking value in the set
{1, . . . ,m}n and use the above scheme to encode it. Let Ln denote the average
codeword length for this coding scheme and show that

lim
n→∞

1

n
Ln = H(X).
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Problem 2. Mutual Information
The mutual information of X and Y is defined as

I(X;Y ) := H(X)−H(X | Y ).

Here, H(X | Y ) denotes the conditional entropy of X given Y , which is defined as:
H(X | Y ) = −

∑
y∈Y pY (y)

∑
x∈X pX|Y (x | y) log2 pX|Y (x | y). The interpretation of

conditional entropy is the average amount of uncertainty remaining in the random
variable X after observing Y . The interpretation of mutual information is therefore
the amount of information about X gained by observing Y .

1. Show that H(X,Y ) = H(Y ) + H(X | Y ) = H(X) + H(Y | X). This is often
called the Chain Rule. Interpret this rule.

2. Show that I(X;Y ) = H(X) + H(Y ) − H(X,Y ). Note that this shows that
I(X;Y ) = I(Y ;X), i.e., mutual information is symmetric.

3. Consider the noisy typewriter in Figure 1. Let X be the input to the

Figure 1: Noisy typewriter: Each symbol gets sent to one of the adjacent symbols
with probability 1/2.

noisy typewriter, and let Y be the output (X is a random variable that takes
values in the English alphabet). What is the distribution of X that maximizes
I(X;Y )?

It turns out that I(X;Y ) ≥ 0 with equality if and only if X and Y are independent.
The mutual information is an important quantity for channel coding.

Problem 3. Random Multiplication
Let X be uniformly distributed in the set {0, 1, 2, . . . , 6} and Z be uniformly dis-
tributed in the set {1, 2, . . . , 6}. Also, define Y = XZ(mod 7). Find H(X|Y ).

Problem 4. Isolated Vertices
Consider a Erdös-Renyi random graph G(n, p(n)), where n is the number of vertices
and p(n) is the probability that a specific edge appears in the graph. Let Xn be the

2



number of isolated vertices in G(n, p(n)). Show that

E[Xn]
n→∞−−−→


∞, p(n)� lnn

n
,

exp(−c), p(n) =
lnn + c

n
,

0, p(n)� lnn

n
,

where the notation p(n)� f(n) means that p(n)/f(n)→ 0 as n→∞, and p(n)�
f(n) means p(n)/f(n) → ∞ as n → ∞. Show also that in the third case, p(n) �
(lnn)/n, we have Xn → 0 in probability as well.

Problem 5. Random Bipartite Graph
Consider a random bipartite graph with, K left nodes and M right nodes. Each of
the K ·M possible edges of this graph is present with probability p independently.

1. Find the distribution of the degree of a particular right node.

2. We call a right node with degree one a singleton. What is the average number
of singletons in a random bipartite graph?

3. Find the average number of left nodes that are connected to at least one
singleton.

Problem 6. [Bonus] Connected Random Graph
We start with the empty graph on n vertices, and iteratively we keep on adding
undirected edges {u, v} uniformly at random from the edges that are not so far
present in the graph, until the graph is connected. Let X be a random variable which
is equal to the total number of edges of the graph. Show that E[X] = O(n log n).
Hint: consider the random variable Xk which is equal to the number of edges added
while there are k connected components, until there are k−1 connected components.
Don’t try to calculate E[Xk], an upper bound is enough.
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