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Problem 1. Shannon Code

Consider the following method for generating a code for a random variable X that
takes on m values {1,2,...,m} with probabilities pi,...,pm. Assume that the
probabilities are ordered so that p; > ps > -+ > p;,, > 0. Define

i—1
F; = Zplm
k=1

to be the sum of the probabilities of all symbols less than i, and Fy = 0. Then,
in order to construct the codeword for i, which we denoted by f(i), we consider
the binary expansion of F; € [0,1), and round it off to ; bits, where [; = [log, 1%1
Here, we do not allow the binary expansions to end with infinitely many ones, e.g.
we write 1/2 in binary as 0.1 not 0.0111....

1. Construct the code for the probability distribution (0.5,0.25,0.125,0.125).

2. Show that this code is prefix—ree, that is, if i # j are two different symbols,
then their corresponding codewords are not prefix of each other, i.e. f(7) is
not a prefix of f(j).

Hint: show that if u,v € [0,1) are such that |u —v| > 27, then the first | bits
of the binary representation of u and v can not be the same.

3. If L denotes the average codeword length, show that

H(X)<L<H(X)+1.

4. Assume that X1, Xo,... are i.i.d. copies of X. Note that for each n > 1, we
can treat the block Xi,..., X, as one random variable taking value in the set
{1,...,m}"™ and use the above scheme to encode it. Let L,, denote the average
codeword length for this coding scheme and show that

1
lim —L, = H(X).

n—oo N



Problem 2. Mutual Information
The mutual information of X and Y is defined as

I(X;Y) = H(X) - H(X | Y).

Here, H(X | Y) denotes the conditional entropy of X given Y, which is defined as:
H(X|Y)==,cypy(¥) Xper Pxy(x | y)10gs pxjy (2 | y). The interpretation of
conditional entropy is the average amount of uncertainty remaining in the random
variable X after observing Y. The interpretation of mutual information is therefore
the amount of information about X gained by observing Y.

1. Show that H(X,Y)=H(Y )+ H(X |Y)=H(X)+ H(Y | X). This is often
called the Chain Rule. Interpret this rule.

2. Show that I(X;Y) = H(X) + H(Y) — H(X,Y). Note that this shows that
I(X;Y)=1(Y;X), i.e., mutual information is symmetric.

3. Consider the noisy typewriter in Figure Let X be the input to the
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Figure 1: Noisy typewriter: Each symbol gets sent to one of the adjacent symbols
with probability 1/2.

noisy typewriter, and let Y be the output (X is a random variable that takes
values in the English alphabet). What is the distribution of X that maximizes
I1(X;Y)?

It turns out that I(X;Y) > 0 with equality if and only if X and Y are independent.
The mutual information is an important quantity for channel coding.

Problem 3. Random Multiplication
Let X be uniformly distributed in the set {0,1,2,...,6} and Z be uniformly dis-
tributed in the set {1,2,...,6}. Also, define Y = XZ(mod 7). Find H(X|Y).

Problem 4. Isolated Vertices
Consider a Erdés-Renyi random graph G(n, p(n)), where n is the number of vertices
and p(n) is the probability that a specific edge appears in the graph. Let X, be the



number of isolated vertices in G(n,p(n)). Show that

Inn
o0, p(n) PR
n—00 Inn+c
E[X,] — {exp(—c), p(n)= —
1
0, p(n) > ==,

where the notation p(n) < f(n) means that p(n)/f(n) — 0 as n — oo, and p(n) >
f(n) means p(n)/f(n) — oo as n — oco. Show also that in the third case, p(n) >
(Inn)/n, we have X,, — 0 in probability as well.

Problem 5. Random Bipartite Graph
Consider a random bipartite graph with, K left nodes and M right nodes. Each of
the K - M possible edges of this graph is present with probability p independently.

1. Find the distribution of the degree of a particular right node.

2. We call a right node with degree one a singleton. What is the average number
of singletons in a random bipartite graph?

3. Find the average number of left nodes that are connected to at least one
singleton.

Problem 6. [Bonus| Connected Random Graph

We start with the empty graph on n vertices, and iteratively we keep on adding
undirected edges {u,v} uniformly at random from the edges that are not so far
present in the graph, until the graph is connected. Let X be a random variable which
is equal to the total number of edges of the graph. Show that E[X] = O(nlogn).
Hint: consider the random variable X which is equal to the number of edges added
while there are k£ connected components, until there are k—1 connected components.
Don’t try to calculate E[X}], an upper bound is enough.



