Problem 1. Which of the following is always true about two events A and B in a probability space? Select all that apply.

1. $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
2. $\mathbb{P}(A \cup B) \leq \mathbb{P}(A)+\mathbb{P}(B)$.
3. $\mathbb{P}(A \backslash B) \leq \mathbb{P}(B)$.
4. $\mathbb{P}\left(A^{c}\right) \leq \mathbb{P}(A)$.

Problem 2. Assume n persons arrive at a theater with exactly n seats numbered $1, \ldots, n$. Each person has a ticket with a seat number; however, they ignore the tickets and choose their seats uniformly at random. What is the expected number of persons whose seat numbers is strictly less than their ticket number?

1. $\frac{n-1}{2}$
2. $\frac{n+1}{2}$
3. 1
4. $1 / 2$

Problem 3. Let f and g be 2 probability density functions. Select all that apply:

1. $f g$ is a valid density for any f and g.
2. f^{2} is a valid density for all f.
3. $\frac{f}{4}+\frac{3 g}{4}$ is a valid density for all f and g.
4. $f-g$ is a valid density for all f and g.

Problem 4. Let X and Y be independent Bernoulli random variables with parameters $\frac{1}{2}$. What can you say about the random variables $X+Y$ and $|X-Y|$? (Select all that apply)

1. Independent
2. Uncorrelated
3. Correlated
4. Dependent

Problem 5. From a set of cards numbered $1, \ldots, 10$, we draw 3 cards without replacement uniformly at random, i.e. the first card is chosen uniformly at random from the 10 cards, the second card is chosen uniformly at random from the remaining 9 cards, and the third card is chosen uniformly at random from the remaining 8 cards. What is the expectation of the sum of the numbers on these 3 cards?

1. 11
2. 16.5
3. 19.5
4. 12

Problem 6. A communication network has n inputs and m outputs. Assume there are X_{i} many packets arriving at a given input $1 \leq i \leq n$, where X_{i} 's are independent and each one is distributed according to a Poisson with parameter $\lambda>0$. Furthermore, assume that each packet is independently routed to one of the m outputs uniformly at random. What is the variance of the packets arriving at the first output?

1. $\lambda n / m$
2. $\lambda m / n$
3. $m(\lambda / n)^{2}$
4. $n(\lambda / m)^{2}$

Problem 7. With what value of constant C does $p_{m}:=C 2^{m} / m$! for $m=1,2, \ldots$ become a valid probability mass function?

1. e^{2}
2. e^{-2}
3. $\frac{1}{e^{2}-1}$
4. $\frac{1}{e^{-2}-1}$.

Problem 8. Let X and Y be positive independent continuous random variables and U be independent of X and $Y . U$ takes value $\{-1,+1\}$ with probability $\frac{1}{2}$ each. Define, $S=U X$, and $T=U Y$. Choose the correct answers (Select all that apply):

1. S and T are independent
2. S and T are dependent
3. S^{2} and T^{2} are uncorrelated
4. S^{2} and T^{2} are correlated

Diagnostic Quiz Answer Sheet

Name: \qquad

Q3

Q4

SID: \qquad

Useful formulas:

$$
\begin{gathered}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\sum_{r=0}^{\infty} a r^{n}=\frac{a}{1-r},|r|<1
\end{gathered}
$$

