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There is only one sense in which a sequence of real numbers (a, ) ey is said to converge
to a limit. Namely, a,, —— a if for every € > 0 there exists a positive integer N such that

n—oo
the sequence after N is always within ¢ of the supposed limit a. In contrast, the notion of

convergence becomes somewhat more subtle when discussing convergence of functions. In
this note we briefly describe a few modes of convergence and explain their relationship.
Since the subject quickly becomes very technical, we will state many of the fundamental
results without proof.

Throughout this discussion, fix a probability space €2 and a sequence of random variables
(Xn)nen. Also, let X be another random variable.

1 Almost Sure Convergence

The sequence (X,,)nen is said to converge almost surely or converge with probability
one to the limit X, if the set of outcomes w € Q for which X, (w) —— X(w) forms an
n—oo

event of probability one. In other words, all observed realizations of the sequence (X,,),en
converge to the limit. We abbreviate “almost surely” by “a.s.” and we denote this mode

a.s. .
of convergence by X,, —— X. Of course, one could define an even stronger notion of
n—o0

convergence in which we require X, (w) — X (w) for every outcome (rather than for a set
of outcomes with probability one), but the philosophy of probabilists is to disregard events
of probability zero, as they are never observed. Thus, we regard a.s. convergence as the
strongest form of convergence.

One of the most celebrated results in probability theory is the statement that the sample
average of identically distributed random variables, under very weak assumptions, converges
a.s. to the expected value of their common distribution. This is known as the Strong Law
of Large Numbers (SLLN).

Theorem 1 (Strong Law of Large Numbers). If (X,,)nen are pairwise independent and
identically distributed with E[|X,|] < oo, then n™t 31| X; —= E[X;].
n—oo

An example we will see later in the course is in the context of discrete-time Markov
chains: does the fraction of time spent in a state converge a.s. to a value, and if so, to what
value? Another example of a.s. convergence that we will study is the asymptotic equipartition
property from information theory, and its relevance to coding. Finally, another question of
interest comes from machine learning: if we use the stochastic gradient descent algorithm to
minimize a function, do the iterates converge a.s. to the true minimizer of the function?



2 Convergence in Probability

Next, (X, )nen is said to converge in probability to X, denoted X, T x , if for every
n—oo
e >0, P(|X, — X| >¢) —— 0. In other words, for any fixed € > 0, the probability that the
n—oo

sequence deviates from the supposed limit X by more than € becomes vanishingly small. We
now seek to prove that a.s. convergence implies convergence in probability.

Theorem 2. If X,, - X, then X,, —— X.
n—oo

n—oo

Proof. Fix € > 0. Define A,, := {J.°_, {|X:n — X| > ¢} to be the event that at least one of
X, Xnt1, ... deviates from X by more than €. Observe that A; O Ay O -+ decreases to
an event A which has probability zero, since the a.s. convergence of the sequence (X,,)nen
implies that for all outcomes w (outside of an event of probability zero), the sequence of real
numbers (| X, (w) — X(w)|)nen is eventually bounded by e. Thus,

P(| X, — X|>¢) <P(A,) — P(A) = 0. ]

n—oo

However, the converse is not true.

Example 1. The standard example of a sequence of random variables which converges in
probability but not a.s. is the following. First, set X,, = 0 for all n € N. Then, for each j € N,

pick an index N; uniformly at random from {27,...,2/*1 — 1} and set X ~; = 1. Observe that
P(X,, # 0) = P(Njjog,n] = n) = 272" —— 0, 50 X, —L 4 0. However, for any w € €,
n—oo n—oo

the sequence of real numbers (X,,(w)),en takes on both values 0 and 1 infinitely often, so
(Xn(w))nen does not converge and hence (X,,)nen does not converge a.s. to X.

As a consequence of the SLLN (Theorem 1) and Theorem 2, then if (X,,),en are pairwise
independent and identically distributed with E[|X;|] < oo, then n™' > | X; LN E[X;].
n—oo

This is known as the Weak Law of Large Numbers (WLLN).

The distinction between a.s. convergence and convergence in probability manifests itself
in applications in the following way. If you have convergence in probability, then you know
that the probability of a deviation of any particular size goes to zero, but you may indeed
observe such deviations forever; if you had to pay a dollar for each e-devation, you might end
up paying up infinite dollars. In contrast, with a.s. convergence you are assured that for any
observed realization, there will come a time in the sequence after which there will never be
any such deviations, and thus you will only lose a finite amount of money.

3 Convergence in Distribution

Finally, the last mode of convergence that we will discuss is convergence in distribution
or convergence in law. Here, X, —4 5 X if for each z € R such that P(X =z) =0, we

n—o0

have P(X,, <x) —— P(X < ). Notice that unlike the previous two forms of convergence,
n—o0

convergence in distribution does not require all of the random variables to be defined on the
same probability space.



First we explain why we require P(X,, < x) —— P(X < z) only at points z for which
P(X =) = 0. o
Example 2. Consider the sequence of constant random variables (X,,),en, where we define
X, := 27", We would like to assert that X, 4 X, where X := 0. However, P(X,, <0)=0

n—oo

for all n € N, whereas P(X < 0) = 1, so in particular P(X,, < 0) does not converge to
P(X < 0). Notice that in this example, P(X = 0) = 1, so we can fix this issue by only looking
at points = for which P(X = x) = 0, i.e., points at which the CDF of X is continuous.

In the following important special cases, convergence in distribution is easier to describe:

Theorem 3. 1. If (X,)nen and X take values in Z, and if P(X,, = z) —— P(X = z)
n—oo

for all x € Z, then X, 4 x.

n—oo

2. If (Xn)nen and X are continuous random variables, and if fx, (x) —— fx(x) for all
n—oo

reR, theanL)X.

n—o0

Next we show that convergence in probability implies convergence in distribution.

Theorem 4. If X, —— X, then X,, —— X.
n—oo

n—o0

Proof. Let x be a point such that P(X = z) = 0. Fix ¢ > 0. We can write

P(X, < 1) =P(X, <z, |X,— X|<e) +P(X, <z, | X, — X| >e)
<PX <x+¢e)+P(|X, - X|>¢).

Similarly, we write

PX<z—e)=PX<z—¢ |[X),—X|<e)+PX <z—¢, | X, —X|>¢)
< P(X, < 2) +P(|X, — X| > ).

Combining the two bounds, we have

P(X<z—¢)-P(X,—X|>¢) <P(X, <z) <P(X <z+¢e)+P(|X, — X|>e).

Since X,, —— X, then P(|X,, — X| > ) —— 0, so the bound above tells us that eventually
n—oo n—oo

the sequence (P(X,, < z))nen is trapped between P(X < x —¢) and P(X <z +¢). This is

true for all € > 0 and the CDF of X is continuous at x by assumption, so by taking ¢ — 0,

we conclude that P(X,, < z) —— P(X < z). O
n— o0

The converse is not true: convergence in distribution does not imply convergence in
probability. In fact, a sequence of random variables (X,,),en can converge in distribution
even if they are not jointly defined on the same sample space! (This is because convergence
in distribution is a property only of their marginal distributions.) In contrast, convergence
in probability requires the random variables (X,,),en to be jointly defined on the same
sample space, and determining whether or not convergence in probability holds requires some
knowledge about the joint distribution of (X,,),en. Even when the random variables (X,,),en
are jointly defined, it is possible to construct counterexamples:

3



Example 3. Let X ~ Uniform[—1, 1], and for each positive integer n, let X, := (—1)"Xj.
Then, X, 4 Uniform[—1, 1] for all n € N because the Uniform[—1, 1] distribution is symmetric
around the origin, so convergence in distribution holds (for a silly reason: all of the marginal
distributions are the same). However, (X,,),en does not converge in probability (think about
why this is true).

Thus we have built a small hierarchy

<Xn a.s. X) Theorem 2 <Xn P X) Theorem 4 <Xn d X) '

n—oo n—oo n—oo

We now precisely state the Central Limit Theorem (CLT), which is an assertion
about convergence in distribution.

Theorem 5 (Central Limit Theorem). If (X, )nen s a sequence of i.i.d. random variables
with common mean p and finite variance o2, then

Z?zl Xz —ny d
U\/ﬁ n—00

where Z is a standard Gaussian random variable. Fxplicitly, for all x € R,
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The CLT plays a huge role in statistics, where it is used to provide asymptotic confidence
intervals. Similarly, statisticians work towards proving convergence in distribution to other
common distributions in statistics, such as the chi-squared distribution or the t distribution.
Another example of convergence in distribution is the Poisson Law of Rare Events,
which is used as a justification for the use of the Poisson distribution in models of rare events.
Theorem 6 (Poisson Law of Rare Events). If X,, ~ Binomial(n, p,) where p, —— 0 such

n—oo

that np, —— X\ > 0, then X, BN X, where X ~ Poisson(\).

n—0o0 n—oo

In fact, many other situations (especially concerning balls and bins) have Poisson limits,
and Poisson limits are used in popular random graph models.

4 Miscellaneous Results

4.1 Continuous Mapping
One of the most useful results is presented below:
Theorem 7 (Continuous Mapping). Let f be a continuous function.

1 If X, =25 X, then f(X,) — f(X).
n—oo n—oo

2. If X, % X, then f(X,) —s f(X).

n—oo



3. If X, ﬁ X, then f(X,) —— f(X).

n—oo

A typical application is to analyze a sequence of random variables (X, ),en by applying a
log or exp transformation, which is useful when showing the convergence of (log X,,)nen or
(exp X, )nen is easier than showing that the original sequence (X,,)nen converges.

4.2 Convergence of Expectation

In general, none of the above modes of convergence imply that E[X,] —— E[X]. As
n—o0
an example, let U ~ Uniform[0, 1] and let X,, := nl{U < n~'}. Then, X,, ===+ 0, but
n—oo

E[X,] = 1 for all n. In more advanced treatments of probability theory, convergence of
expected values is quite important, and there are a number of technical tools called convergence
theorems used to justify convergence of expectations. Although we will not need them, we
will state them here.

Theorem 8 (Convergence Theorems). Suppose X, —— X.
n—oo

1. (Monotone Convergence) If 0 < X7 < Xy < X3 < ---, then E[X,| —— E[X].

n—oo

2. (Dominated Convergence) If there exists a random variable Y > 0 with E[Y] < oo and
1X,|,|X| <Y for all n, then E[X,] — E[X].
n—o0
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