UC Berkeley
 Department of Electrical Engineering and Computer Sciences
 EECS 126: Probability and Random Processes

Discussion 13

Fall 2021

1. Orthogonal LLSE

(a) Consider zero-mean random variables X, Y, Z such that Y, Z are orthogonal. Show that $L[X \mid Y, Z]=L[X \mid Y]+L[X \mid Z]$.
(b) Explain why for any zero-mean random variables X, Y, Z it holds that:

$$
L[X \mid Y, Z]=L[X \mid Y]+L[X \mid Z-L[Z \mid Y]]
$$

2. MMSE for Jointly Gaussian Random Variables

Provide justification for each of the following steps $(1-5)$ to prove that the LLSE is equal to the MMSE estimator for jointly Gaussian random variables X and Y.
Let $g(X)=L[Y \mid X]$.

$$
\begin{align*}
& E[(Y-g(X)) X]=0 \tag{1}\\
\Longrightarrow & \operatorname{cov}(Y-g(X), X)=0 \tag{2}\\
\Longrightarrow & Y-g(X) \text { is independent of } X \tag{3}\\
\Longrightarrow & E[(Y-g(X)) f(X)]=0 \forall f(\cdot) \tag{4}\\
\Longrightarrow & g(X)=E[Y \mid X] \tag{5}
\end{align*}
$$

3. Stochastic Linear System MMSE

Let $\left(V_{n}, n \in \mathbb{N}\right)$ be i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ and independent of $X_{0}=\mathcal{N}\left(0, u^{2}\right)$. Let $|a|<1$. Define

$$
X_{n+1}=a X_{n}+V_{n}, \quad n \in \mathbb{N} .
$$

(a) What is the distribution of X_{n}, where n is a positive integer?
(b) Find $\mathbb{E}\left[X_{n+m} \mid X_{n}\right]$ for $m, n \in \mathbb{N}, m \geq 1$.
(c) Find u so that the distribution of X_{n} is the same for all $n \in \mathbb{N}$.
4. (Optional, included for practice) Random Walk with Unknown Drift

Consider a random walk with unknown drift. The dynamics are given, for $n \in \mathbb{N}$, as

$$
\begin{aligned}
X_{1}(n+1) & =X_{1}(n)+X_{2}(n)+V(n), \\
X_{2}(n+1) & =X_{2}(n), \\
Y(n) & =X_{1}(n)+W(n) .
\end{aligned}
$$

Here, X_{1} represents the position of the particle and X_{2} represents the velocity of the particle (which is unknown but constant throughout time). Y is the observation. V and W are independent Gaussian noise variables with mean zero and variance σ_{V}^{2} and σ_{W}^{2} respectively.
(a) Write down the dynamics of the system in matrix-vector form and write down the Kalman filter recursive equations for this system.
(b) Let k be a positive integer. Compute the prediction $\mathbb{E}\left(X(n+k) \mid Y^{(n)}\right)$, where $Y^{(n)}$ is the history of the observations Y_{0}, \ldots, Y_{n}, in terms of the estimate $\hat{X}(n):=\mathbb{E}\left(X(n) \mid Y^{(n)}\right)$.
(c) Now let $k=1$ and compute the smoothing estimate $\mathbb{E}\left(X(n) \mid Y^{(n+1)}\right)$ in terms of the quantities that appear in the Kalman filter equation.
Hint: Use the law of total expectation

$$
\mathbb{E}\left(X(n) \mid Y^{(n+1)}\right)=\mathbb{E}\left[\mathbb{E}\left(X(n) \mid X(n+1), Y^{(n+1)}\right) \mid Y^{(n+1)}\right]
$$

as well as the innovation

$$
\tilde{X}(n+1):=X(n+1)-L\left[X(n+1) \mid Y^{(n)}\right] .
$$

