UC Berkeley
 Department of Electrical Engineering and Computer Sciences
 EECS 126: Probability and Random Processes

Discussion 5

Fall 2021

1. Curse of Dimensionality

In this problem, we will use the law of large numbers to illustrate a statistical phenomenon. In particular, consider the hypercube $[-1,1]^{n}$ in \mathbb{R}^{n}, and let X_{1}, \ldots, X_{n} be iid Uniform $([-1,1])$.
(a) For $\epsilon>0$ consider the set

$$
A_{n, \epsilon}:=\left\{x \in \mathbb{R}^{n}:(1-\epsilon) \sqrt{n / 3}<\|x\|_{2}<(1+\epsilon) \sqrt{n / 3}\right\},
$$

which is the ϵ-boundary of a ball with radius $\sqrt{n / 3}$ centered at the origin. For low dimensions $n=1,2$ and $\epsilon=1 / 10$, compute the fraction of volume of $[-1,1]^{n}$ which comes from $A_{n, \epsilon}$.
(b) Show that as n gets large, most of the volume of the hypercube comes from $A_{n, \epsilon}$. Comment on why this contradicts the intuition developed in part (a).

2. Product of Rolls of a Die

A fair die with labels (1 to 6) is rolled until the product of the last two rolls is 12 . What is the expected number of rolls?
[Hint: You can model this process as a Markov chain with 3 states. Choose your states according to the outcome of last roll. For example, assign one state if it is outcome was 1 or 5 (which is useless if you want the product to be 12). If the outcome was $2,3,4$ or 6 , it's useful and can be assigned another state. Assign third state to the case when the product last two outcomes was 12.]

3. Concentration for Binomials \& Gaussians

For sums of bounded zero-mean i.i.d. random variables $S_{n}=X_{1}+\ldots+X_{n}$, a Chernoff-type inequality tells us that

$$
P\left(\left|S_{n}\right| \geq t \sqrt{n}\right) \leq C \exp \left(-c t^{2}\right),
$$

for some constants $C, c>0$.
(a) (Optional) Prove the inequality above.
(b) Let $Z \sim \mathcal{N}(0,1)$. Show that

$$
P(|Z| \geq t) \leq C \exp \left(-c t^{2}\right) .
$$

