UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Problem Set 11

Fall 2021

1. Midterm

Solve all of the problems on the midterm again (including the ones you got correct).

2. Compression of a Random Source

Suppose I'm trying to send a text message to my friend. In general, I know I need $\log_2(26)$ bits for every letter I want to send because there are 26 letters in the alphabet. However, it turns out if I have some information on the distribution of the letters, I can do better. For example, I might give the letter e a shorter bit representation because I know it's the most common. Actually, it turns out the number of bits I need on average is the entropy, and in this problem, we try to show why this is true in general.

Let $(X_i)_{i=1}^{\infty} \stackrel{\text{i.i.d.}}{\sim} p(\cdot)$, where p is a discrete PMF on a finite set \mathcal{X} . We know the entropy of a random variable X is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$$

Since entropy is really a function of the distribution, we could write the entropy as H(p).

(a) Show that

$$-\frac{1}{n}\log_2 p(X_1,\ldots,X_n) \xrightarrow{n\to\infty} H(X_1)$$
 almost surely.

(Here, we are extending the notation $p(\cdot)$ to denote the joint PMF of (X_1, \ldots, X_n) : $p(x_1, \ldots, x_n) := p(x_1) \cdots p(x_n)$.)

(b) Fix $\epsilon > 0$ and define $A_{\epsilon}^{(n)}$ as the set of all sequences $(x_1, \dots, x_n) \in \mathcal{X}^n$ such that:

$$2^{-n(H(X_1)+\epsilon)} \le p(x_1,\ldots,x_n) \le 2^{-n(H(X_1)-\epsilon)}$$
.

Show that $P((X_1, ..., X_n) \in A_{\epsilon}^{(n)}) > 1 - \epsilon$ for all n sufficiently large. Consequently, $A_{\epsilon}^{(n)}$ is called the **typical set** because the observed sequences lie within $A_{\epsilon}^{(n)}$ with high probability.

(c) Show that $(1 - \epsilon)2^{n(H(X_1) - \epsilon)} \le |A_{\epsilon}^{(n)}| \le 2^{n(H(X_1) + \epsilon)}$, for n sufficiently large. Use the union bound.

Parts (b) and (c) are called the **asymptotic equipartition property (AEP)** because they say that there are $\approx 2^{nH(X_1)}$ observed sequences which each have probability $\approx 2^{-nH(X_1)}$. Thus, by discarding the sequences outside of $A_{\epsilon}^{(n)}$, we need only keep track of $2^{nH(X_1)}$ sequences, which means that a length-n sequence can be compressed into $\approx nH(X_1)$ bits, requiring $H(X_1)$ bits per symbol.

- (d) Now show that for any $\delta > 0$ and any positive integer n, if $B_n \subseteq \mathcal{X}^n$ is a set with $|B_n| \leq 2^{n(H(X_1) \delta)}$, then $P((X_1, \dots, X_n) \in B_n) \to 0$ as $n \to \infty$.
 - This says that we cannot compress the observed sequences of length n into any set smaller than size $2^{nH(X_1)}$.
 - [Hint: Consider the intersection of B_n and $A_{\epsilon}^{(n)}$.]
- (e) Next we turn towards using the AEP for compression. Recall that in order to encode a set of size n in binary, it requires $\lceil \log_2 n \rceil$ bits. Therefore, a naïve encoding requires $\lceil \log_2 |\mathcal{X}| \rceil$ bits per symbol.
 - From (b) and (d), if we use $\log_2 |A_{\epsilon}^{(n)}| \approx nH(X_1)$ bits to encode the sequences in $A_{\epsilon}^{(n)}$, ignoring all other sequences, then the probability of error with this encoding will tend to 0 as $n \to \infty$, and thus an asymptotically error-free encoding can be achieved using $H(X_1)$ bits per symbol.

Alternatively, we can create an error-free code by using $1 + \lceil \log_2 |A_{\epsilon}^{(n)}| \rceil$ bits to encode the sequences in $A_{\epsilon}^{(n)}$ and $1 + n\lceil \log_2 |\mathcal{X}| \rceil$ bits to encode other sequences, where the first bit is used to indicate whether the sequence belongs in $A_{\epsilon}^{(n)}$ or not. Let L_n be the length of the encoding of X_1, \ldots, X_n using this code; show that $\lim_{n\to\infty} \mathbb{E}[L_n]/n \leq H(X_1) + \epsilon$. In other words, asymptotically, we can compress the sequence so that the number of bits per symbol is arbitrary close to the entropy.