UC Berkeley
 Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Problem Set 12

Fall 2021

1. Flipping Coins and Hypothesizing

You flip a coin until you see heads. Let

$$
X= \begin{cases}1 & \text { if the bias of the coin is } q>p \\ 0 & \text { if the bias of the coin is } p\end{cases}
$$

Find a decision rule $\hat{X}(Y)$ that maximizes $P[\hat{X}=1 \mid X=1]$ subject to $P[\hat{X}=1 \mid X=0] \leq \beta$ for $\beta \in[0,1]$. Remember to calculate the randomization constant γ.

2. Gaussian Hypothesis Testing

Consider a hypothesis testing problem that if $X=0$, you observe a sample of $\mathcal{N}\left(\mu_{0}, \sigma^{2}\right)$, and if $X=1$, you observe a sample of $\mathcal{N}\left(\mu_{1}, \sigma^{2}\right)$, where $\mu_{0}, \mu_{1} \in \mathbb{R}, \sigma^{2}>0$. Find the Neyman-Pearson test for false alarm $\alpha \in(0,1)$, that is, $P(\hat{X}=1 \mid X=0) \leq \alpha$.

3. BSC Hypothesis Testing

Consider a BSC with some error probability $\epsilon \in\left[0.1,0.5\right.$). Given n inputs and outputs (x_{i}, y_{i}) of the BSC, solve a hypothesis problem to detect that $\epsilon>0.1$ with a probability of false alarm at most equal to 0.05 . Assume that n is very large and use the CLT.

Hint: The null hypothesis is $\epsilon=0.1$. The alternate hypothesis is $\epsilon>0.1$, which is a composite hypothesis (this means that under the alternate hypothesis, the probability distribution of the observation is not completely determined; compare this to a simple hypothesis such as $\epsilon=0.3$, which does completely determine the probability distribution of the observation). The Neyman-Pearson Lemma we learned in class applies for the case of a simple null hypothesis and a simple alternate hypothesis, so it does not directly apply here.
To fix this, fix some specific $\epsilon^{\prime}>0.1$ and use the Neyman-Pearson Lemma to find the optimal hypothesis test for the hypotheses $\epsilon=0.1$ vs. $\epsilon=\epsilon^{\prime}$. Then, argue that the optimal decision rule does not depend on the specific choice of ϵ^{\prime}; thus, the decision rule you derive will be simultaneously optimal for testing $\epsilon=0.1$ vs. $\epsilon=\epsilon^{\prime}$ for all $\epsilon^{\prime}>0.1$.

4. Basic Properties of Jointly Gaussian Random Variables

Let $\left(X_{1}, \ldots, X_{n}\right)$ be a collection of jointly Gaussian random variables. Their joint density is given by (for $x \in \mathbb{R}^{n}$)

$$
f(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(C)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} C^{-1}(x-\mu)\right),
$$

where μ is the mean vector and C is the covariance matrix.
(a) Show that X_{1}, \ldots, X_{n} are independent if and only if they are pairwise uncorrelated.
(b) Show that any linear combination of these random variables will also be a Gaussian random variable.

5. Independent Gaussians

Let $X=(X, Y)$ be a jointly Gaussian random vector with mean vector $[0,0]$ and covariance matrix

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Find a 2×2 matrix U such that $U X=\left(X^{\prime}, Y^{\prime}\right)$ where X^{\prime} and Y^{\prime} are independent.

