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1. Flipping Coins and Hypothesizing

You flip a coin until you see heads. Let

X =

{
1 if the bias of the coin is q > p.

0 if the bias of the coin is p.

Find a decision rule X̂(Y ) that maximizes P [X̂ = 1 | X = 1] subject to P [X̂ = 1 | X = 0] ≤ β
for β ∈ [0, 1]. Remember to calculate the randomization constant γ.

2. Gaussian Hypothesis Testing

Consider a hypothesis testing problem that if X = 0, you observe a sample of N (µ0, σ
2),

and if X = 1, you observe a sample of N (µ1, σ
2), where µ0, µ1 ∈ R, σ2 > 0. Find the

Neyman-Pearson test for false alarm α ∈ (0, 1), that is, P (X̂ = 1 | X = 0) ≤ α.

3. BSC Hypothesis Testing

Consider a BSC with some error probability ε ∈ [0.1, 0.5). Given n inputs and outputs (xi, yi)
of the BSC, solve a hypothesis problem to detect that ε > 0.1 with a probability of false alarm
at most equal to 0.05. Assume that n is very large and use the CLT.

Hint : The null hypothesis is ε = 0.1. The alternate hypothesis is ε > 0.1, which is a composite
hypothesis (this means that under the alternate hypothesis, the probability distribution of
the observation is not completely determined; compare this to a simple hypothesis such as
ε = 0.3, which does completely determine the probability distribution of the observation). The
Neyman-Pearson Lemma we learned in class applies for the case of a simple null hypothesis
and a simple alternate hypothesis, so it does not directly apply here.

To fix this, fix some specific ε′ > 0.1 and use the Neyman-Pearson Lemma to find the optimal
hypothesis test for the hypotheses ε = 0.1 vs. ε = ε′. Then, argue that the optimal decision
rule does not depend on the specific choice of ε′; thus, the decision rule you derive will be
simultaneously optimal for testing ε = 0.1 vs. ε = ε′ for all ε′ > 0.1.

4. Basic Properties of Jointly Gaussian Random Variables

Let (X1, . . . , Xn) be a collection of jointly Gaussian random variables. Their joint density is
given by (for x ∈ Rn)

f(x) =
1√

(2π)ndet(C)
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
,

where µ is the mean vector and C is the covariance matrix.

(a) Show that X1, . . . , Xn are independent if and only if they are pairwise uncorrelated.
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(b) Show that any linear combination of these random variables will also be a Gaussian
random variable.

5. Independent Gaussians

Let X = (X,Y ) be a jointly Gaussian random vector with mean vector [0, 0] and covariance
matrix [

2 1
1 2

]
Find a 2× 2 matrix U such that UX = (X ′, Y ′) where X ′ and Y ′ are independent.
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