UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Problem Set 6 Fall 2021

1. The CLT Implies the WLLN

- (a) Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Show that if $X_n \xrightarrow{\mathsf{d}} c$, where c is a constant, then $X_n \xrightarrow{P} c$.
- (b) Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables, with mean μ and finite variance σ^2 . Show that the CLT implies the WLLN, i.e. if

$$\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^{n}(X_{i}-\mu)\xrightarrow{\mathsf{d}}\mathcal{N}(0,1),$$

then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\xrightarrow{P}\mu.$$

2. Confidence Intervals: Chebyshev vs. Chernoff vs. CLT

Let X_1, \ldots, X_n be i.i.d. Bernoulli(q) random variables, with common mean $\mu = \mathbb{E}[X_1] = q$ and variance $\sigma^2 = \operatorname{var}(X_1) = q(1-q)$. We want to estimate the mean μ , and towards this goal we use the sample mean estimator

$$\bar{X}_n \stackrel{\Delta}{=} \frac{X_1 + \dots + X_n}{n}.$$

Given some confidence level $a \in (0, 1)$ we want to construct a confidence interval around \bar{X}_n such that μ lies in this interval with probability at least 1 - a.

(a) Use Chebyshev's inequality in order to show that μ lies in the interval

$$\left(\bar{X}_n - \frac{\sigma}{\sqrt{n}}\frac{1}{\sqrt{a}}, \ \bar{X}_n + \frac{\sigma}{\sqrt{n}}\frac{1}{\sqrt{a}}\right)$$

with probability at least 1 - a.

(b) A Chernoff bound for this setting can be computed to be:

$$P(|\bar{X}_n - q| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$
, for any $\epsilon > 0$.

Use this inequality in order to show that μ lies in the interval

$$\left(\bar{X}_n - \frac{\frac{1}{2}}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}, \ \bar{X}_n + \frac{\frac{1}{2}}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\right)$$

with probability at least 1 - a.

(c) Show that if $Z \sim \mathcal{N}(0, 1)$, then

$$P(|Z| \ge \epsilon) \le 2e^{-\frac{\epsilon^2}{2}}$$
, for any $\epsilon > 0$.

(d) Use the Central Limit Theorem, and Part (c) in order to heuristically argue that μ lies in the interval

$$\left(\bar{X}_n - \frac{\sigma}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}, \ \bar{X}_n + \frac{\sigma}{\sqrt{n}}\sqrt{2\ln\frac{2}{a}}\right)$$

with probability at least 1 - a.

(e) Compare the three confidence intervals.

3. Transform Practice

Consider a random variable Z with transform

$$M_Z(s) = \frac{a - 3s}{s^2 - 6s + 8}, \quad \text{for } |s| < 2$$

Calculate the following quantities:

- (a) The numerical value of the parameter a.
- (b) $\mathbb{E}[Z]$.
- (c) $\operatorname{var}(Z)$.

4. Rotationally Invariant Random Variables

Suppose random variables X and Y are i.i.d., with zero mean, such that their joint density is rotation invariant, i.e. for any orthogonal matrix U with orthonormal rows and orthonormal columns,

$$U\begin{bmatrix} X\\ Y\end{bmatrix} \stackrel{d}{=} \begin{bmatrix} X\\ Y\end{bmatrix}$$

- (a) Let $\varphi(t)$ be the characteristic function of X. Show that $\varphi(t)^n = \varphi(\sqrt{nt})$.
- (b) Show that $\varphi(t) = \exp(ct^2)$ for some constant c, and all t such that $t^2 \in \mathbb{Q}$. *Hint:* Let $t^2 = a/b$, where a, b are positive integers.
- (c) Conclude that X and Y must be Gaussians.

5. Matrix Sketching

Matrix sketching is an important technique in randomized linear algebra to do large computations efficiently. For example, to compute the multiplication $\mathbf{A}^T \times \mathbf{B}$ of two large matrices \mathbf{A} and \mathbf{B} , we can use a random sketch matrix \mathbf{S} to compute a "sketch" $\mathbf{S}\mathbf{A}$ of \mathbf{A} and a "sketch" $\mathbf{S}\mathbf{B}$ of \mathbf{B} . Such a sketching matrix has the property that $\mathbf{S}^T\mathbf{S} \approx \mathbf{I}$ so that the approximate multiplication $\mathbf{A}^T\mathbf{S}^T\mathbf{S}\mathbf{B}$ is close to $\mathbf{A}^T\mathbf{B}$.

In this problem, we will discuss two popular sketching schemes and understand how they help in approximate computation. Let $\hat{\mathbf{I}} = \mathbf{S}^T \mathbf{S}$ and the dimension of sketch matrix \mathbf{S} be $d \times n$ (typically $d \ll n$). (a) (Gaussian-sketch) Define

$$\mathbf{S} = \frac{1}{\sqrt{d}} \begin{bmatrix} S_{11} & \dots & S_{1n} \\ \vdots & \ddots & \vdots \\ S_{d1} & \dots & S_{dn} \end{bmatrix}$$

such that S_{ij} 's are chosen i.i.d. from $\mathcal{N}(0,1)$ for all $i \in [1,d]$ and $j \in [1,n]$. Find the element-wise mean and variance (as a function of d) of the matrix $\hat{\mathbf{I}} = \mathbf{S}^T \mathbf{S}$, that is, find $\mathbb{E}[\hat{I}_{ij}]$ and $\operatorname{Var}[\hat{I}_{ij}]$ for all $i \in [1,n]$ and $j \in [1,n]$.

(b) (Count-sketch) For each column $j \in [1, n]$ of **S**, choose a row *i* uniformly randomly from [1, d] such that

$$S_{ij} = \begin{cases} 1, & \text{with probability } 0.5\\ -1, & \text{with probability } 0.5 \end{cases}$$

and assign $S_{kj} = 0$ for all $k \neq i$. An example of a 3×8 count-sketch is

	0	-1	1	0	0	-1	0	0]
$\mathbf{S} =$	1	0	0	0	-1	0	-1	0
	0	0	0	1	0	0	0	-1

Again, find the element-wise mean and variance (as a function of d) of the matrix $\hat{\mathbf{I}} = \mathbf{S}^T \mathbf{S}$.

Note that for sufficiently large d, the matrix $\hat{\mathbf{I}}$ is close to the identity matrix for both cases. We will use this fact in the lab to do an approximate matrix multiplication.

Note: You can use the fact that the fourth moment of a standard Gaussian is 3 without proof.