UC Berkeley
 Department of Electrical Engineering and Computer Sciences
 EECS 126: Probability and Random Processes

Problem Set 6
Fall 2021

1. The CLT Implies the WLLN

(a) Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of random variables. Show that if $X_{n} \xrightarrow{\mathrm{~d}} c$, where c is a constant, then $X_{n} \xrightarrow{P} c$.
(b) Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of i.i.d. random variables, with mean μ and finite variance σ^{2}. Show that the CLT implies the WLLN, i.e. if

$$
\frac{1}{\sigma \sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \xrightarrow{\mathrm{d}} \mathcal{N}(0,1)
$$

then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mu .
$$

2. Confidence Intervals: Chebyshev vs. Chernoff vs. CLT

Let X_{1}, \ldots, X_{n} be i.i.d. $\operatorname{Bernoulli}(q)$ random variables, with common mean $\mu=\mathbb{E}\left[X_{1}\right]=q$ and variance $\sigma^{2}=\operatorname{var}\left(X_{1}\right)=q(1-q)$. We want to estimate the mean μ, and towards this goal we use the sample mean estimator

$$
\bar{X}_{n} \triangleq \frac{X_{1}+\cdots+X_{n}}{n}
$$

Given some confidence level $a \in(0,1)$ we want to construct a confidence interval around \bar{X}_{n} such that μ lies in this interval with probability at least $1-a$.
(a) Use Chebyshev's inequality in order to show that μ lies in the interval

$$
\left(\bar{X}_{n}-\frac{\sigma}{\sqrt{n}} \frac{1}{\sqrt{a}}, \bar{X}_{n}+\frac{\sigma}{\sqrt{n}} \frac{1}{\sqrt{a}}\right)
$$

with probability at least $1-a$.
(b) A Chernoff bound for this setting can be computed to be:

$$
P\left(\left|\bar{X}_{n}-q\right| \geq \epsilon\right) \leq 2 e^{-2 n \epsilon^{2}}, \quad \text { for any } \epsilon>0
$$

Use this inequality in order to show that μ lies in the interval

$$
\left(\bar{X}_{n}-\frac{\frac{1}{2}}{\sqrt{n}} \sqrt{2 \ln \frac{2}{a}}, \bar{X}_{n}+\frac{\frac{1}{2}}{\sqrt{n}} \sqrt{2 \ln \frac{2}{a}}\right)
$$

with probability at least $1-a$.
(c) Show that if $Z \sim \mathcal{N}(0,1)$, then

$$
P(|Z| \geq \epsilon) \leq 2 e^{-\frac{\epsilon^{2}}{2}}, \quad \text { for any } \epsilon>0
$$

(d) Use the Central Limit Theorem, and Part (c) in order to heuristically argue that μ lies in the interval

$$
\left(\bar{X}_{n}-\frac{\sigma}{\sqrt{n}} \sqrt{2 \ln \frac{2}{a}}, \bar{X}_{n}+\frac{\sigma}{\sqrt{n}} \sqrt{2 \ln \frac{2}{a}}\right)
$$

with probability at least $1-a$.
(e) Compare the three confidence intervals.

3. Transform Practice

Consider a random variable Z with transform

$$
M_{Z}(s)=\frac{a-3 s}{s^{2}-6 s+8}, \quad \text { for }|s|<2
$$

Calculate the following quantities:
(a) The numerical value of the parameter a.
(b) $\mathbb{E}[Z]$.
(c) $\operatorname{var}(Z)$.

4. Rotationally Invariant Random Variables

Suppose random variables X and Y are i.i.d., with zero mean, such that their joint density is rotation invariant, i.e. for any orthogonal matrix U with orthonormal rows and orthonormal columns,

$$
U\left[\begin{array}{l}
X \\
Y
\end{array}\right] \stackrel{d}{=}\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

(a) Let $\varphi(t)$ be the characteristic function of X. Show that $\varphi(t)^{n}=\varphi(\sqrt{n} t)$.
(b) Show that $\varphi(t)=\exp \left(c t^{2}\right)$ for some constant c, and all t such that $t^{2} \in \mathbb{Q}$. Hint: Let $t^{2}=a / b$, where a, b are positive integers.
(c) Conclude that X and Y must be Gaussians.

5. Matrix Sketching

Matrix sketching is an important technique in randomized linear algebra to do large computations efficiently. For example, to compute the multiplication $\mathbf{A}^{T} \times \mathbf{B}$ of two large matrices \mathbf{A} and \mathbf{B}, we can use a random sketch matrix \mathbf{S} to compute a "sketch" SA of \mathbf{A} and a "sketch" $\mathbf{S B}$ of \mathbf{B}. Such a sketching matrix has the property that $\mathbf{S}^{T} \mathbf{S} \approx \mathbf{I}$ so that the approximate multiplication $\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S B}$ is close to $\mathbf{A}^{T} \mathbf{B}$.
In this problem, we will discuss two popular sketching schemes and understand how they help in approximate computation. Let $\hat{\mathbf{I}}=\mathbf{S}^{T} \mathbf{S}$ and the dimension of sketch matrix \mathbf{S} be $d \times n$ (typically $d \ll n$).
(a) (Gaussian-sketch) Define

$$
\mathbf{S}=\frac{1}{\sqrt{d}}\left[\begin{array}{cccc}
S_{11} & \ldots & \ldots & S_{1 n} \\
\vdots & \ddots & & \vdots \\
S_{d 1} & \ldots & \ldots & S_{d n}
\end{array}\right]
$$

such that $S_{i j}$'s are chosen i.i.d. from $\mathcal{N}(0,1)$ for all $i \in[1, d]$ and $j \in[1, n]$. Find the element-wise mean and variance (as a function of d) of the matrix $\hat{\mathbf{I}}=\mathbf{S}^{T} \mathbf{S}$, that is, find $\mathbb{E}\left[\hat{I}_{i j}\right]$ and $\operatorname{Var}\left[\hat{I}_{i j}\right]$ for all $i \in[1, n]$ and $j \in[1, n]$.
(b) (Count-sketch) For each column $j \in[1, n]$ of \mathbf{S}, choose a row i uniformly randomly from $[1, d]$ such that

$$
S_{i j}= \begin{cases}1, & \text { with probability } 0.5 \\ -1, & \text { with probability } 0.5\end{cases}
$$

and assign $S_{k j}=0$ for all $k \neq i$. An example of a 3×8 count-sketch is

$$
\mathbf{S}=\left[\begin{array}{cccccccc}
0 & -1 & 1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1
\end{array}\right]
$$

Again, find the element-wise mean and variance (as a function of d) of the matrix $\hat{\mathbf{I}}=\mathbf{S}^{T} \mathbf{S}$.
Note that for sufficiently large d, the matrix $\hat{\mathbf{I}}$ is close to the identity matrix for both cases. We will use this fact in the lab to do an approximate matrix multiplication.
Note: You can use the fact that the fourth moment of a standard Gaussian is 3 without proof.

