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1. The CLT Implies the WLLN

(a) Let {Xn}n∈N be a sequence of random variables. Show that if Xn
d−→ c, where c is a

constant, then Xn
P−→ c.

(b) Let {Xn}n∈N be a sequence of i.i.d. random variables, with mean µ and finite variance
σ2. Show that the CLT implies the WLLN, i.e. if

1

σ
√
n

n∑
i=1

(Xi − µ)
d−→ N (0, 1),

then
1

n

n∑
i=1

Xi
P−→ µ.

2. Confidence Intervals: Chebyshev vs. Chernoff vs. CLT

Let X1, . . . , Xn be i.i.d. Bernoulli(q) random variables, with common mean µ = E[X1] = q
and variance σ2 = var(X1) = q(1 − q). We want to estimate the mean µ, and towards this
goal we use the sample mean estimator

X̄n
∆
=
X1 + · · ·+Xn

n
.

Given some confidence level a ∈ (0, 1) we want to construct a confidence interval around X̄n

such that µ lies in this interval with probability at least 1− a.

(a) Use Chebyshev’s inequality in order to show that µ lies in the interval(
X̄n −

σ√
n

1√
a
, X̄n +

σ√
n

1√
a

)
with probability at least 1− a.

(b) A Chernoff bound for this setting can be computed to be:

P (|X̄n − q| ≥ ε) ≤ 2e−2nε2 , for any ε > 0.

Use this inequality in order to show that µ lies in the interval(
X̄n −

1
2√
n

√
2 ln

2

a
, X̄n +

1
2√
n

√
2 ln

2

a

)
with probability at least 1− a.
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(c) Show that if Z ∼ N (0, 1), then

P (|Z| ≥ ε) ≤ 2e−
ε2

2 , for any ε > 0.

(d) Use the Central Limit Theorem, and Part (c) in order to heuristically argue that µ lies
in the interval (

X̄n −
σ√
n

√
2 ln

2

a
, X̄n +

σ√
n

√
2 ln

2

a

)
with probability at least 1− a.

(e) Compare the three confidence intervals.

3. Transform Practice

Consider a random variable Z with transform

MZ(s) =
a− 3s

s2 − 6s+ 8
, for |s| < 2.

Calculate the following quantities:

(a) The numerical value of the parameter a.

(b) E[Z].

(c) var(Z).

4. Rotationally Invariant Random Variables

Suppose random variables X and Y are i.i.d., with zero mean, such that their joint density is
rotation invariant, i.e. for any orthogonal matrix U with orthonormal rows and orthonormal
columns,

U

[
X
Y

]
d
=

[
X
Y

]
(a) Let ϕ(t) be the characteristic function of X. Show that ϕ(t)n = ϕ(

√
nt).

(b) Show that ϕ(t) = exp(ct2) for some constant c, and all t such that t2 ∈ Q. Hint: Let
t2 = a/b, where a, b are positive integers.

(c) Conclude that X and Y must be Gaussians.

5. Matrix Sketching

Matrix sketching is an important technique in randomized linear algebra to do large computa-
tions efficiently. For example, to compute the multiplication AT ×B of two large matrices A
and B, we can use a random sketch matrix S to compute a ”sketch” SA of A and a ”sketch”
SB of B. Such a sketching matrix has the property that STS ≈ I so that the approximate
multiplication ATSTSB is close to ATB.

In this problem, we will discuss two popular sketching schemes and understand how they help
in approximate computation. Let Î = STS and the dimension of sketch matrix S be d × n
(typically d� n).
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(a) (Gaussian-sketch) Define

S =
1√
d

S11 . . . . . . S1n
...

. . .
...

Sd1 . . . . . . Sdn


such that Sij ’s are chosen i.i.d. from N (0, 1) for all i ∈ [1, d] and j ∈ [1, n]. Find the

element-wise mean and variance (as a function of d) of the matrix Î = STS, that is, find
E[Îij ] and Var[Îij ] for all i ∈ [1, n] and j ∈ [1, n].

(b) (Count-sketch) For each column j ∈ [1, n] of S, choose a row i uniformly randomly
from [1, d] such that

Sij =

{
1, with probability 0.5

−1, with probability 0.5

and assign Skj = 0 for all k 6= i. An example of a 3× 8 count-sketch is

S =

0 −1 1 0 0 −1 0 0
1 0 0 0 −1 0 −1 0
0 0 0 1 0 0 0 −1


Again, find the element-wise mean and variance (as a function of d) of the matrix Î = STS.

Note that for sufficiently large d, the matrix Î is close to the identity matrix for both cases.
We will use this fact in the lab to do an approximate matrix multiplication.

Note: You can use the fact that the fourth moment of a standard Gaussian is 3 without
proof.
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