Concentration Inequalities

EECS 126 (UC Berkeley)

Fall 2021

Suppose we have a collection of scalar random variables X_1, \ldots, X_n . We may often wish to analyze the distribution of their sum (or equivalently, their average)

$$S_n = X_1 + \dots + X_n.$$

It turns out that, assuming that our X_i have a sufficient amount of regularity and independence, which will be quantified throughout this section, the probability of being close to the mean will sharply concentrate in a relatively narrow range.

1 The Moment Method, Chernoff/Hoeffding Bounds

The first moment method should be a familiar application of Markov's inequality,

$$\mathbb{P}(|S_n| \ge \lambda) \le \frac{1}{\lambda} \sum_{i=1}^n \mathbb{E}|X_i|, \tag{1}$$

as should the second moment method, an application of Chebyshev's inequality,

$$\mathbb{P}(|S_n| \ge \lambda) \le \frac{1}{\lambda^2} \sum_{i=1}^n \operatorname{Var}(X_i),$$
(2)

where we have assumed that the X_i are pairwise independent.

Exercise 1.1. Come up with examples of random variables X_1, \ldots, X_n in which (1) and (2) are tight.

We can play a similar game with k-th moments, by assuming k-wise independence. We'd have to do some combinatorial bookkeeping with the terms in

$$\mathbb{E}|S_n|^k = \sum_{1 \le i_1, \dots, i_k \le n} \mathbb{E}X_{i_1} \dots X_{i_k}.$$

and after some algebra involving Stirling's formula, we can arrive at the large deviation bound

$$\mathbb{P}(|S_n| \ge \lambda \sqrt{n}) \le 2 \left(\frac{\sqrt{ek/2}}{\lambda}\right)^k.$$
(3)

But instead of dwelling on this, we can often obtain much better bounds using exponential moments, namely by considering the moment generating function $\mathbb{E}e^{tS_n}$. The following is a bound for a single random variable which will be useful.

Notes by Albert Zhang

Lemma 1.2 (Hoeffding's lemma) If X is a scalar random variable taking values in [a, b], then for any t > 0,

$$\mathbb{E}e^{tX} \le e^{t\mathbb{E}X} \left(1 + O\left(t^2 \operatorname{Var}(X)e^{O(t(b-a))}\right) \right),\tag{4}$$

and in particular,

$$\mathbb{E}e^{tX} \le e^{t\mathbb{E}X}e^{O(t^2\operatorname{Var}(X))} \le e^{t\mathbb{E}X}e^{O(t^2(b-a)^2)}.$$
(5)

Proof. Note that we can subtract the mean from X, a, b and assume that $\mathbb{E}X = 0$. Furthermore, by normalizing X we can assume that b - a = 1. Then X = O(1), and we have the Taylor expansion

$$e^{tX} = 1 + tX + (tX)^2 \left(\frac{1}{2} + \frac{tX}{3!} + \cdots\right)$$
$$= 1 + tX + O\left(t^2 X^2 e^{O(t)}\right).$$

Taking expectations gives us

$$\mathbb{E}e^{tX} = 1 + O\left(t^2 \operatorname{Var}(X)e^{O(t)}\right)$$

proving (4). To get the other bound, note that $Var(X) \leq (b-a)^2$, and consider the function

$$f(x) = \frac{1 + x^2 e^x}{e^{x^2}},$$

which can be shown to be bounded. With x = t(b - a), this gives us (5).

Using some calculus, we can sharpen Hoeffding's lemma to the following explicit bound:

Theorem 1.3 (Chernoff bound)

Let X_1, \ldots, X_n be independent scalar random variables with $|X_i| \leq K$ almost surely, with means μ_i and variances σ_i^2 . Then for any $\lambda > 0$, we have

$$\mathbb{P}(|S_n - \mu| \ge \lambda \sigma) \le C \max\left(e^{-c\lambda^2}, e^{-c\lambda\sigma/K}\right),\tag{6}$$

where C, c > 0 are constants, $\mu := \sum_{i=1}^{n} \mu_i$, and $\sigma^2 := \sum_{i=1}^{n} \sigma_i^2$.

Proof. We may assume that $\mu_i = 0$ and K = 1. It then suffices to prove the upper tail bound

$$\mathbb{P}(S_n \ge \lambda \sigma) \le C \max\left(e^{-c\lambda^2}, e^{-c\lambda\sigma}\right).$$

Note that by independence,

$$\mathbb{E}e^{tS_n} = \prod_{i=1}^n \mathbb{E}e^{tX_i}.$$

By (5) and the fact that $|X| \leq 1$, we have

$$\mathbb{E}e^{tX_i} \le e^{O(t^2\sigma_i^2)},$$

and together this gives us

$$\mathbb{E}e^{tS_n} < e^{O(t^2\sigma^2)}$$

By Markov's inequality, one has

$$\mathbb{P}(S_n \ge \lambda \sigma) \le e^{O(t^2 \sigma^2) - t\lambda \sigma}.$$

Optimizing over t subject to the constraint $t \in [0, 1]$ gives us (6).

Exercise 1.4. By letting t take values in some larger interval than [0, 1], show that the term $e^{-c\lambda\sigma/K}$ in the Chernoff bound can be replaced with $(\lambda K/\sigma)^{-c\lambda\sigma/K}$, which is better for when $\lambda K \gg \sigma$.

Corollary 1.5 (Hoeffding bound) Let X_1, \ldots, X_n be independent random variables taking values in intervals $[a_i, b_i]$, respectively. Then

$$\mathbb{P}(|S_n - \mathbb{E}S_n| \ge \lambda\sigma) \le Ce^{-c\lambda^2}$$

where C, c > 0 are constants and $\sigma^2 := \sum_{i=1}^n |b_i - a_i|^2$.

Proof. This follows from Chernoff's bound and the assumption that $\operatorname{Var}(S_n) = \sum_{i=1}^n |b_i - a_i|^2$. \Box