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Suppose we have a collection of scalar random variables X1, . . . , Xn. We may often wish to
analyze the distribution of their sum (or equivalently, their average)

Sn = X1 + · · ·+Xn.

It turns out that, assuming that our Xi have a sufficient amount of regularity and independence,
which will be quantified throughout this section, the probability of being close to the mean will
sharply concentrate in a relatively narrow range.

1 The Moment Method, Chernoff/Hoeffding Bounds

The first moment method should be a familiar application of Markov’s inequality,

P(|Sn| ≥ λ) ≤ 1

λ

n∑
i=1

E|Xi|, (1)

as should the second moment method, an application of Chebyshev’s inequality,

P(|Sn| ≥ λ) ≤ 1

λ2

n∑
i=1

Var(Xi), (2)

where we have assumed that the Xi are pairwise independent.

Exercise 1.1. Come up with examples of random variables X1, . . . , Xn in which (1) and (2) are
tight.

We can play a similar game with k-th moments, by assuming k-wise independence. We’d have
to do some combinatorial bookkeeping with the terms in

E|Sn|k =
∑

1≤i1,...,ik≤n

EXi1 . . . Xik ,

and after some algebra involving Stirling’s formula, we can arrive at the large deviation bound

P(|Sn| ≥ λ
√
n) ≤ 2

(√
ek/2

λ

)k
. (3)

But instead of dwelling on this, we can often obtain much better bounds using exponential
moments, namely by considering the moment generating function EetSn . The following is a bound
for a single random variable which will be useful.
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Lemma 1.2 (Hoeffding’s lemma)

If X is a scalar random variable taking values in [a, b], then for any t > 0,

EetX ≤ etEX
(

1 +O
(
t2Var(X)eO(t(b−a))

))
, (4)

and in particular,

EetX ≤ etEXeO(t2Var(X)) ≤ etEXeO(t2(b−a)2). (5)

Proof. Note that we can subtract the mean from X, a, b and assume that EX = 0. Furthermore,
by normalizing X we can assume that b − a = 1. Then X = O(1), and we have the Taylor
expansion

etX = 1 + tX + (tX)2
(

1

2
+
tX

3!
+ · · ·

)
= 1 + tX +O

(
t2X2eO(t)

)
.

Taking expectations gives us

EetX = 1 +O
(
t2Var(X)eO(t)

)
,

proving (4). To get the other bound, note that Var(X) ≤ (b− a)2, and consider the function

f(x) =
1 + x2ex

ex2 ,

which can be shown to be bounded. With x = t(b− a), this gives us (5).

Using some calculus, we can sharpen Hoeffding’s lemma to the following explicit bound:

Theorem 1.3 (Chernoff bound)

Let X1, . . . , Xn be independent scalar random variables with |Xi| ≤ K almost surely, with
means µi and variances σ2

i . Then for any λ > 0, we have

P(|Sn − µ| ≥ λσ) ≤ C max
(
e−cλ

2

, e−cλσ/K
)
, (6)

where C, c > 0 are constants, µ :=
∑n
i=1 µi, and σ2 :=

∑n
i=1 σ

2
i .

Proof. We may assume that µi = 0 and K = 1. It then suffices to prove the upper tail bound

P(Sn ≥ λσ) ≤ C max
(
e−cλ

2

, e−cλσ
)
.

Note that by independence,

EetSn =

n∏
i=1

EetXi .

By (5) and the fact that |X| ≤ 1, we have

EetXi ≤ eO(t2σ2
i ),
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and together this gives us

EetSn ≤ eO(t2σ2).

By Markov’s inequality, one has

P(Sn ≥ λσ) ≤ eO(t2σ2)−tλσ.

Optimizing over t subject to the constraint t ∈ [0, 1] gives us (6).

Exercise 1.4. By letting t take values in some larger interval than [0, 1], show that the term
e−cλσ/K in the Chernoff bound can be replaced with (λK/σ)−cλσ/K , which is better for when
λK � σ.

Corollary 1.5 (Hoeffding bound)

Let X1, . . . , Xn be independent random variables taking values in intervals [ai, bi], respec-
tively. Then

P(|Sn − ESn| ≥ λσ) ≤ Ce−cλ
2

,

where C, c > 0 are constants and σ2 :=
∑n
i=1 |bi − ai|2.

Proof. This follows from Chernoff’s bound and the assumption that Var(Sn) =
∑n
i=1 |bi−ai|2.
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