Concentration Inequalities

EECS 126 (UC Berkeley)

Fall 2021

Suppose we have a collection of scalar random variables X_{1}, \ldots, X_{n}. We may often wish to analyze the distribution of their sum (or equivalently, their average)

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

It turns out that, assuming that our X_{i} have a sufficient amount of regularity and independence, which will be quantified throughout this section, the probability of being close to the mean will sharply concentrate in a relatively narrow range.

1 The Moment Method, Chernoff/Hoeffding Bounds

The first moment method should be a familiar application of Markov's inequality,

$$
\begin{equation*}
\mathbb{P}\left(\left|S_{n}\right| \geq \lambda\right) \leq \frac{1}{\lambda} \sum_{i=1}^{n} \mathbb{E}\left|X_{i}\right| \tag{1}
\end{equation*}
$$

as should the second moment method, an application of Chebyshev's inequality,

$$
\begin{equation*}
\mathbb{P}\left(\left|S_{n}\right| \geq \lambda\right) \leq \frac{1}{\lambda^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \tag{2}
\end{equation*}
$$

where we have assumed that the X_{i} are pairwise independent.
Exercise 1.1. Come up with examples of random variables X_{1}, \ldots, X_{n} in which (1) and (2) are tight.

We can play a similar game with k-th moments, by assuming k-wise independence. We'd have to do some combinatorial bookkeeping with the terms in

$$
\mathbb{E}\left|S_{n}\right|^{k}=\sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} \mathbb{E} X_{i_{1}} \ldots X_{i_{k}}
$$

and after some algebra involving Stirling's formula, we can arrive at the large deviation bound

$$
\begin{equation*}
\mathbb{P}\left(\left|S_{n}\right| \geq \lambda \sqrt{n}\right) \leq 2\left(\frac{\sqrt{e k / 2}}{\lambda}\right)^{k} \tag{3}
\end{equation*}
$$

But instead of dwelling on this, we can often obtain much better bounds using exponential moments, namely by considering the moment generating function $\mathbb{E} e^{t S_{n}}$. The following is a bound for a single random variable which will be useful.

[^0]
Lemma 1.2 (Hoeffding's lemma)

If X is a scalar random variable taking values in $[a, b]$, then for any $t>0$,

$$
\begin{equation*}
\mathbb{E} e^{t X} \leq e^{t \mathbb{E} X}\left(1+O\left(t^{2} \operatorname{Var}(X) e^{O(t(b-a))}\right)\right) \tag{4}
\end{equation*}
$$

and in particular,

$$
\begin{equation*}
\mathbb{E} e^{t X} \leq e^{t \mathbb{E} X} e^{O\left(t^{2} \operatorname{Var}(X)\right)} \leq e^{t \mathbb{E} X} e^{O\left(t^{2}(b-a)^{2}\right)} \tag{5}
\end{equation*}
$$

Proof. Note that we can subtract the mean from X, a, b and assume that $\mathbb{E} X=0$. Furthermore, by normalizing X we can assume that $b-a=1$. Then $X=O(1)$, and we have the Taylor expansion

$$
\begin{aligned}
e^{t X} & =1+t X+(t X)^{2}\left(\frac{1}{2}+\frac{t X}{3!}+\cdots\right) \\
& =1+t X+O\left(t^{2} X^{2} e^{O(t)}\right)
\end{aligned}
$$

Taking expectations gives us

$$
\mathbb{E} e^{t X}=1+O\left(t^{2} \operatorname{Var}(X) e^{O(t)}\right)
$$

proving (4). To get the other bound, note that $\operatorname{Var}(X) \leq(b-a)^{2}$, and consider the function

$$
f(x)=\frac{1+x^{2} e^{x}}{e^{x^{2}}}
$$

which can be shown to be bounded. With $x=t(b-a)$, this gives us (5).
Using some calculus, we can sharpen Hoeffding's lemma to the following explicit bound:

Theorem 1.3 (Chernoff bound)

Let X_{1}, \ldots, X_{n} be independent scalar random variables with $\left|X_{i}\right| \leq K$ almost surely, with means μ_{i} and variances σ_{i}^{2}. Then for any $\lambda>0$, we have

$$
\begin{equation*}
\mathbb{P}\left(\left|S_{n}-\mu\right| \geq \lambda \sigma\right) \leq C \max \left(e^{-c \lambda^{2}}, e^{-c \lambda \sigma / K}\right) \tag{6}
\end{equation*}
$$

where $C, c>0$ are constants, $\mu:=\sum_{i=1}^{n} \mu_{i}$, and $\sigma^{2}:=\sum_{i=1}^{n} \sigma_{i}^{2}$.

Proof. We may assume that $\mu_{i}=0$ and $K=1$. It then suffices to prove the upper tail bound

$$
\mathbb{P}\left(S_{n} \geq \lambda \sigma\right) \leq C \max \left(e^{-c \lambda^{2}}, e^{-c \lambda \sigma}\right)
$$

Note that by independence,

$$
\mathbb{E} e^{t S_{n}}=\prod_{i=1}^{n} \mathbb{E} e^{t X_{i}}
$$

By (5) and the fact that $|X| \leq 1$, we have

$$
\mathbb{E} e^{t X_{i}} \leq e^{O\left(t^{2} \sigma_{i}^{2}\right)}
$$

and together this gives us

$$
\mathbb{E} e^{t S_{n}} \leq e^{O\left(t^{2} \sigma^{2}\right)}
$$

By Markov's inequality, one has

$$
\mathbb{P}\left(S_{n} \geq \lambda \sigma\right) \leq e^{O\left(t^{2} \sigma^{2}\right)-t \lambda \sigma}
$$

Optimizing over t subject to the constraint $t \in[0,1]$ gives us (6).
Exercise 1.4. By letting t take values in some larger interval than $[0,1]$, show that the term $e^{-c \lambda \sigma / K}$ in the Chernoff bound can be replaced with $(\lambda K / \sigma)^{-c \lambda \sigma / K}$, which is better for when $\lambda K \gg \sigma$.

Corollary 1.5 (Hoeffding bound)
Let X_{1}, \ldots, X_{n} be independent random variables taking values in intervals $\left[a_{i}, b_{i}\right]$, respectively. Then

$$
\mathbb{P}\left(\left|S_{n}-\mathbb{E} S_{n}\right| \geq \lambda \sigma\right) \leq C e^{-c \lambda^{2}}
$$

where $C, c>0$ are constants and $\sigma^{2}:=\sum_{i=1}^{n}\left|b_{i}-a_{i}\right|^{2}$.

Proof. This follows from Chernoff's bound and the assumption that $\operatorname{Var}\left(S_{n}\right)=\sum_{i=1}^{n}\left|b_{i}-a_{i}\right|^{2}$.

[^0]: Notes by Albert Zhang

