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Suppose we have a collection of scalar random variables X1, ..., X,,. We may often wish to
analyze the distribution of their sum (or equivalently, their average)

Sp=X1+- -+ Xp.

It turns out that, assuming that our X; have a sufficient amount of regularity and independence,
which will be quantified throughout this section, the probability of being close to the mean will
sharply concentrate in a relatively narrow range.

1 The Moment Method, Chernoff/Hoeffding Bounds

The first moment method should be a familiar application of Markov’s inequality,

Z | Xil, (1)

as should the second moment method, an application of Chebyshev’s inequality,

P(|Sn| > A) <

>/M—‘

P(|Sn| > A) S%Z (2)

where we have assumed that the X; are pairwise independent.

Exercise 1.1. Come up with examples of random variables X7, ..., X,, in which (1) and (2) are
tight.

We can play a similar game with k-th moments, by assuming k-wise independence. We’d have
to do some combinatorial bookkeeping with the terms in

E|S,|* = Z EX,, ... Xi,,

1<iy, ., ig<n

and after some algebra involving Stirling’s formula, we can arrive at the large deviation bound

P(S,| > M) <2 (Vem) . 3)

A

But instead of dwelling on this, we can often obtain much better bounds using exponential
moments, namely by considering the moment generating function Ee*>~. The following is a bound
for a single random variable which will be useful.
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Lemma 1.2 (Hoeffding’s lemma)

If X is a scalar random variable taking values in [a, b], then for any ¢t > 0,
Ee!X < eBX (1 +0 (tzVar(X)eo(t(bfa)))> , (4)

and in particular,
EetX < et]EXeO(tZVar(X)) < et]EXeO(t2(b—a)2). (5)

Proof. Note that we can subtract the mean from X, a,b and assume that EX = 0. Furthermore,
by normalizing X we can assume that b —a = 1. Then X = O(1), and we have the Taylor
expansion

1 tX
e =14tX 4 (tX)? (2+3‘+-~-)

— 14X +0 (£2X200)
Taking expectations gives us
Ee'X =1+0 (tQVar(X)eo(t)) ,

proving (4). To get the other bound, note that Var(X) < (b — a)?, and consider the function

1+ z2e®
= 2 ;

fl) =12
which can be shown to be bounded. With z = ¢(b — a), this gives us (5). O

Using some calculus, we can sharpen Hoeffding’s lemma to the following explicit bound:

Theorem 1.3 (Chernoff bound)

Let Xi,...,X, be independent scalar random variables with |X;| < K almost surely, with
means p; and variances o2. Then for any A > 0, we have

P(|Sn — | > Ao) < Cmax (e—c,\2’e_c>\a/K) 7 ©)

where C,c > 0 are constants, g := >+, pi;, and 0% := > 1" | o7

Proof. We may assume that u; = 0 and K = 1. It then suffices to prove the upper tail bound
P(S,, > Ao) < Cmax (e_c’\2,e_°/\‘7> .

Note that by independence,
n
EetSn = HEetX".

i=1

By (5) and the fact that |X| < 1, we have

tX; O(t?o?
Ee!Xi < 00



and together this gives us
EetSn < eO(t202)

By Markov’s inequality, one has
]P)(Sn > /\0_) < eO(t202)—t)\U.
Optimizing over ¢ subject to the constraint ¢ € [0, 1] gives us (6). O

Exercise 1.4. By letting ¢ take values in some larger interval than [0, 1], show that the term
e~ /K in the Chernoff bound can be replaced with (AK /o)~ /K which is better for when
AK > 0.

Corollary 1.5 (Hoeffding bound)

Let Xi,...,X, be independent random variables taking values in intervals [a;, b;], respec-
tively. Then
2
P(|S,, — ES,| > \o) < Ce™,

where C,c > 0 are constants and 0% := Y"1 | |b; — a;

Proof. This follows from Chernoff’s bound and the assumption that Var(S,,) = Y7, |bi—a;[?. O
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