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Multiplexing

* Canonical Example: Sharing of a link by multiple connections.

— Each connection will get the rate of C /v, where the RV v represents # of active
connections.

* In general, multiplexing addresses sharing of a common resource.

* We'll consider different statistical aspects of multiplexing.



Binomial Distribution

* Consider the link sharing example.

* v =p B(N,p) can be used to model the number of active users.
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* Find smallest ms.t. P(v > m) < 0.05, or equivalently P(v < m) > 0.95

— This would imply each active user will get at least a rate of C/m with probability 95%
or higher.

— Observe P(v < 27) = 0.966 > 0.95 and P(v < 26) = 0.944 < 0.95.




Gaussian Random Variable

* X =p Nuod?)

)
- PDFfX(X)zﬁz_exp(—%(u) >,—oo<x<oo.
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— Note X = u+ oW, where W =, N(0,1) is a standard normal/Gaussian RV.
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— Useful facts: P(W > 1.65) = 0.05,P(W > 1.96) ~ 0.025, P(W > 2.32) = 0.01.

— Above facts hold for general Gaussian RV larger than the mean by a scalar multiple of
the standard deviation (e.g., P(X > u + 1.650) = 0.05, where X =, N'(u, 02)).




Central Limit Theorem (CLT)

Convergence in Distribution: Let {X(n),n = 1} and X be random variables. We say
X (n) converges in distribution to X, and write X(n) = X, if P(X(n) < x) —
P(X<x)Vxs.t.P(X=x)=0.

- X(n) » X a.s.implies X(n) - X in probability implies X(n) = X. (See proofs here.)
CLT Theorem: Let {X(n),n = 1} be IID RVs with mean E(X(n)) = u, and

X()+Xx(2)+--+X(n)—nu
v = N(0,1).

var(X(n)) = g2. Then, asn - oo,

Binomial and Gaussian:
- BYCLT, B(N,p) = V(Np, Np(1 — p)).
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- P(B(N,p) > Np + 1.65/Np(1 — p)) = 0.05. Hence m = Np + 1.65,/Np(1 — p) ~ 27
for B(100,0.2).



https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables

Confidence Intervals

Let Y(N) =, B(N,p)/N, and define A; = {Y(N) = p + 1.65,/p(1 —p)/N}and
A, ={Y(N) <p—1.65/p(1 —p)/N}.

Due to CLT, P(4; U 4,) = 0.1, or P(A§ n AS) = 0.9.

Since p(1 — p) < 1/4, we have P (Y(N) - 0.83% <p < Y(N)+0.83

— 90% Confidence Interval.
— Replacing 1.65 by 2 (i.e., 0.83 by 1), gives 95% Confidence Interval.
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Increasing N, shrinks the interval.

— Determine N based on the desired estimation margin.

Consider any IID RVs {X(n),n = 1} with mean u without knowledge of a bound on
the variance.

—  Let the sample mean p,, = ~¥X@++X@)

n
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— Let g, be the sample standard deviation, where g2 = Zm:l(i(_"? )"
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Characteristic Functions

e Definition: Th_e characteristic function of a random variable X is defined as
dx(w) = E(e™¥),u € R, where i = V-1,
— It’s similar to the Moment Generating Function (MGF) My (t) :== E(e¥),t € R.

u2

— LetX =, N(0,1).Then, px(u) =e 2.

— Acharacteristic function determines the associated PDF/CDF uniquely.

* Moments of N'(0,1).



Proof of Central Limit Theorem (Sketch)

* Theorem: Let {X(n),n = 1} be IID RVs with mean E(X(n)) = u, and var(X(n)) =
X(1)+X(2)+-+X(n)—nu
= N(0,1).
agVn

o%.Then,asn = o,



Two Applications of Characteristic Functions

* Poisson as a limit of Binomial: B(n,A/n) = P(A).

* Exponential as a limit of Geometric: G(A/n)/n = Exp(A).



Miscellaneous Results

Let X,Y be ID V' (0,1) RVs. Then, Z := X2 + Y? =, Exp(1/2).

Let Q(x) = P(X > x), X =p N (0,1). Then,

where fy(x) is the PDF of X.
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Buffers at a switch

Multiplexing of traffic at an output port of a switch can cause buffering.

EE—— -
—_— —b
— —

— DTMC model for buffering at an output port.

— At each instant n+ (right after time n)* a packet arrives with probability 4 € [0, 1]
independently of the past.

— Time to transmit a packet is geometrically distributed with parameter u € (0, 1], all
transmission times are independent.

= A packetin service completes transmission at n- (just before time n)* with probability .

— Let {X,,,n = 0} be the number of packets in the output buffer at time n.
Po=u(1—),p; =41 —p),p1 =1-po — P2

n—1 n n+1 N—-1 N
P2 P2 i p2 i P2 P2 | D2

*This clarification of arrival/departure at n+/n- is not in the textbook.




Buffers at a switch (Cont’d)

* DTMC Analysis:

Let N be the buffer capacity in terms of number of packets.

Balance equations yield the invariant distribution 7 with (i) = m(0)p%,i= 0,1, ..., N,
1_
where p = p,/py, and ©(0) = 1_p1€+1.

Average # of packets in the buffer under the invariant distribution = ﬁ (assuming A < u
and N > 1).

. . . . . 1-
Average delay in the buffer (from arrival until service completion) = ”—_’;L

* Little’s Law: Let L = average # in the system, A = average arrival rate and W = average
time in the system, then L = AW.












