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• Canonical Example: Sharing of a link by multiple connections.

– Each connection will get the rate of 𝐶/𝑣, where the RV 𝑣 represents # of active 
connections.

• In general, multiplexing addresses sharing of a common resource.

• We’ll consider different statistical aspects of multiplexing.

Multiplexing



• Consider the link sharing example.

• 𝑣 ≡𝐷 𝐵(𝑁, 𝑝) can be used to model the number of active users.

• Find smallest 𝑚 s.t. 𝑃(𝑣 > 𝑚) ≤ 0.05, or equivalently 𝑃 𝑣 ≤ 𝑚 > 0.95

– This would imply each active user will get at least a rate of 𝐶/𝑚 with probability 95% 
or higher.

– Observe 𝑃 𝑣 ≤ 27 = 0.966 > 0.95 and 𝑃 𝑣 ≤ 26 = 0.944 < 0.95.

Binomial Distribution

Probability Mass Function 𝐵(100, 𝑝)

Percent Point Function (CDF Inverse) of 𝐵(100, 0.2)

𝑝𝑟𝑜𝑏

𝑚



• 𝑋 =𝐷 𝒩(𝜇, 𝜎2)
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– Note 𝑋 = 𝜇 + 𝜎𝑊, where 𝑊 =𝐷 𝒩 0, 1 is a standard normal/Gaussian RV.

– Useful facts: 𝑃 𝑊 > 1.65 ≈ 0.05, 𝑃 𝑊 > 1.96 ≈ 0.025, 𝑃(𝑊 > 2.32) ≈ 0.01.

– Above facts hold for general Gaussian RV larger than the mean by a scalar multiple of 
the standard deviation (e.g., 𝑃 𝑋 > 𝜇 + 1.65𝜎 = 0.05, where 𝑋 =𝐷 𝒩(𝜇, 𝜎2)).

Gaussian Random Variable



• Convergence in Distribution: Let 𝑋 𝑛 , 𝑛 ≥ 1 and 𝑋 be random variables. We say 
𝑋(𝑛) converges in distribution to 𝑋, and write 𝑋 𝑛 ⇒ X, if 𝑃 𝑋 𝑛 ≤ 𝑥 →
𝑃 𝑋 ≤ 𝑥 ∀𝑥 𝑠. 𝑡. 𝑃 𝑋 = 𝑥 = 0.

– 𝑋 𝑛 → 𝑋 𝑎. 𝑠. implies 𝑋 𝑛 → 𝑋 in probability implies 𝑋 𝑛 ⇒ 𝑋. (See proofs here.)

• CLT Theorem: Let {𝑋 𝑛 , 𝑛 ≥ 1} be IID RVs with mean 𝐸 𝑋 𝑛 = 𝜇, and 

𝑣𝑎𝑟 𝑋 𝑛 = 𝜎2. Then, as 𝑛 → ∞,  
𝑋 1 +𝑋 2 +⋯+𝑋 𝑛 −𝑛𝜇

𝜎 𝑛
⇒𝒩(0, 1).

• Binomial and Gaussian:

– BY CLT, 𝐵 𝑁, 𝑝 ≈ 𝒩 𝑁𝑝,𝑁𝑝 1 − 𝑝 .

– 𝑃 𝐵 𝑁, 𝑝 > 𝑁𝑝 + 1.65 𝑁𝑝 1 − 𝑝 ≈ 0.05. Hence 𝑚 = 𝑁𝑝 + 1.65 𝑁𝑝(1 − 𝑝) ≈ 27
for 𝐵(100, 0.2).

Central Limit Theorem (CLT)

https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables


• Let 𝑌 𝑁 ≡𝐷 𝐵(𝑁, 𝑝)/𝑁, and define 𝐴1 = {𝑌 𝑁 ≥ 𝑝 + 1.65 𝑝(1 − 𝑝)/𝑁} and 

𝐴2 = {𝑌 𝑁 ≤ 𝑝 − 1.65 𝑝(1 − 𝑝)/𝑁}.

• Due to CLT, 𝑃 𝐴1 ∪ 𝐴2 ≈ 0.1, or 𝑃(𝐴1
𝐶 ∩ 𝐴2

𝐶) ≈ 0.9.

• Since 𝑝 1 − 𝑝 < 1/4, we have 𝑃 𝑌 𝑁 − 0.83
1

𝑁
≤ p ≤ 𝑌 𝑁 + 0.83

1

𝑁
≥ 0.9.

– 90% Confidence Interval.

– Replacing 1.65 by 2 (i.e., 0.83 by 1), gives 95% Confidence Interval.

• Increasing 𝑁, shrinks the interval.

– Determine 𝑁 based on the desired estimation margin.

• Consider any IID RVs 𝑋 𝑛 , 𝑛 ≥ 1 with mean 𝜇 without knowledge of a bound on 
the variance.

– Let the sample mean 𝜇𝑛 =
𝑋 1 +𝑋 2 +⋯+𝑋(𝑛)

𝑛
.

– Let 𝜎𝑛 be the sample standard deviation, where 𝜎𝑛
2 =

 𝑚=1
𝑛 (𝑋 𝑚 −𝜇𝑛)

2

𝑛−1
.

– 90% Confidence Interval for 𝜇: 𝜇𝑛 − 1.65
𝜎𝑛

𝑛
, 𝜇𝑛 + 1.65

𝜎𝑛

𝑛
.

– 95% Confidence Interval for 𝜇: 𝜇𝑛 − 2
𝜎𝑛

𝑛
, 𝜇𝑛 + 2

𝜎𝑛

𝑛
.

Confidence Intervals



• Definition: The characteristic function of a random variable 𝑋 is defined as  
𝜙𝑋 𝑢 = E 𝑒𝑖𝑢𝑋 , 𝑢 ∈ ℛ, where 𝑖 = −1.

– It’s similar to the Moment Generating Function (MGF) 𝑀𝑋 𝑡 ≔ 𝐸 𝑒𝑡𝑋 , 𝑡 ∈ ℛ.

– Let 𝑋 ≡𝐷 𝒩 0, 1 . Then, 𝜙𝑋 𝑢 = 𝑒−
𝑢2

2 .

– A characteristic function determines the associated PDF/CDF uniquely.

• Moments of 𝒩(0, 1).

Characteristic Functions



• Theorem: Let {𝑋 𝑛 , 𝑛 ≥ 1} be IID RVs with mean 𝐸 𝑋 𝑛 = 𝜇, and 𝑣𝑎𝑟 𝑋 𝑛 =

𝜎2. Then, as 𝑛 → ∞,  
𝑋 1 +𝑋 2 +⋯+𝑋 𝑛 −𝑛𝜇

𝜎 𝑛
⇒ 𝒩(0, 1).

Proof of Central Limit Theorem (Sketch)



• Poisson as a limit of Binomial: 𝐵(𝑛, 𝜆/𝑛) ⇒ 𝑃(λ).

• Exponential as a limit of Geometric:  𝐺(  𝜆 𝑛) 𝑛 ⇒ 𝐸𝑥𝑝(𝜆).

Two Applications of Characteristic Functions



• Let 𝑋, 𝑌 be IID 𝒩(0, 1) RVs. Then, 𝑍 ≔ 𝑋2 + 𝑌2 ≡𝐷 𝐸𝑥𝑝(  1 2).

• Let 𝑄 𝑥 ≔ 𝑃(𝑋 > 𝑥), 𝑋 ≡𝐷 𝒩(0, 1). Then, 
𝑥

1+𝑥2
𝑓𝑋 𝑥 ≤ 𝑄 𝑥 ≤

1

𝑥
𝑓𝑋(𝑥), ∀ 𝑥 > 0, 

where 𝑓𝑋(𝑥) is the PDF of 𝑋.

Miscellaneous Results



• Multiplexing of traffic at an output port of a switch can cause buffering.

– DTMC model for buffering at an output port.

– At each instant 𝑛+ (right after time 𝑛)* a packet arrives with probability 𝜆 ∈ [0, 1]
independently of the past.

– Time to transmit a packet is geometrically distributed with parameter 𝜇 ∈ (0, 1], all 
transmission times are independent.

 A packet in service completes transmission at 𝑛- (just before time 𝑛)* with probability 𝜇.

– Let 𝑋𝑛, 𝑛 ≥ 0 be the number of packets in the output buffer at time 𝑛.

Buffers at a switch

𝑝0 = 𝜇 1 − 𝜆 , 𝑝2 = 𝜆 1 − 𝜇 , 𝑝1 = 1 − 𝑝0 − 𝑝2

*This clarification of arrival/departure at n+/n- is not in the textbook.



• DTMC Analysis:

– Let 𝑁 be the buffer capacity in terms of number of packets.

– Balance equations yield the invariant distribution 𝜋 with 𝜋 𝑖 = 𝜋 0 𝜌𝑖 , i = 0, 1, … , N, 

where 𝜌 =  𝑝2 𝑝0, and 𝜋 0 =
1−𝜌

1−𝜌𝑁+1
.

– Average # of packets in the buffer under the invariant distribution ≈
𝜌

1−𝜌
(assuming 𝜆 < 𝜇

and 𝑁 ≫ 1).

– Average delay in the buffer (from arrival until service completion) ≈
1−𝜇

𝜇−𝜆
.

• Little’s Law: Let 𝐿 = average # in the system, 𝜆 = average arrival rate and W = average 
time in the system, then 𝐿 = 𝜆𝑊.

Buffers at a switch (Cont’d)








