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• Infinite Discrete Time Markov Chains (Section 15.3)

• Poisson Process (Section 15.4)

• Continuous Time Markov Chains (Section 6.2)

• Queues (Sections 5.6, 5.7, 5.10, 6.3)

• (Optional Reading) Social Networks: Spreading Rumors (Section 5.1), Cascades 
(Section 5.2)

Topics of Interest on Networks



• 𝑋(𝑛 , 𝑛 ≥ 0} is a Markov Chain over an infinite State Space 𝒳 = {0, 1, 2, … }.

– Initial distribution 𝜋 𝑖 , 𝑖 ∈ 𝒳 s. t. 𝜋 𝑖 ≥ 0,  𝑖 𝜋 𝑖 = 1.

– State Transition Probability Matrix 𝑃 of non-negative numbers s. t.  𝑗 𝑃 𝑖, 𝑗 = 1, ∀ 𝑖.

• Irreducible and aperiodic DTMCs are defined the same way as for the finite DTMCs.

• Invariant distribution 𝜋 satisfies the balance equations 𝜋 = 𝜋𝑃.

• A state is transient if one starts from this state, it’s visited only finitely often. A 
state is recurrent if it’s not transient.

• A recurrent state is positive recurrent if the average time between successive visits 
is finite, other wise it’s null recurrent.

• Theorem: For an irreducible DTMC, states are either all transient, all positive 
recurrent or all null recurrent.

• Example: Random Walk reflected at 0.

– Transient if 𝑝 >  1 2, null recurrent if 𝑝 =  1 2, and positive recurrent if 𝑝 <  1 2.

Infinite Discrete Time Markov Chains (DTMCs)



• Theorem: Consider an irreducible DTMC over an infinite state space with an 
invariant distribution 𝜋. Then, for each 𝑖, π 𝑖 = 1/E[𝑇𝑖|X 0 = i], where 𝑇𝑖 is 
the first time > 0 to reach state 𝑖.

• Big Theorem: Consider an irreducible DTMC over an infinite state space. Then,

a. If positive recurrent, there is a unique invariant distribution 𝜋.

b. If positive recurrent, long-term fraction of time 𝑋 𝑛 = 𝑖 ≔

lim
𝑁→∞

1

𝑁
 𝑛=0
𝑁−11{𝑋 𝑛 = 𝑖} = π(𝑖).

c. If positive recurrent and aperiodic, 𝜋𝑛 → 𝜋.

d. If not positive recurrent, it does not have an invariant distribution, and 
fraction of time spent in any state goes to 0.

Big Theorem for Infinite DTMC

Random Walk reflected @ 0.



• Definition: Let 𝜆 > 0, and {𝑆1, 𝑆2, … } be IID 𝐸𝑥𝑝(𝜆) RVs. Let also 𝑇𝑛 = 𝑆1 +⋯+ 𝑆𝑛
for 𝑛 ≥ 1. Define 𝑁𝑡 = 0 if 𝑡 < 𝑇1, otherwise 𝑁𝑡 = max n ≥ 1 𝑇𝑛 ≤ 𝑡}, t ≥ 0. 
Then, 𝑁 ≔ {𝑁𝑡, 𝑡 ≥ 0} is a Poisson process with rate 𝜆.

• Theorem (Poisson process is Memoryless): Let 𝑁 ≔ {𝑁𝑡 , 𝑡 ≥ 0} be a Poisson 
process with rate 𝜆. Given 𝑁𝑠, 𝑠 ≤ 𝑡 , {𝑁𝑠+𝑡 − 𝑁𝑡, 𝑠 ≥ 0} is Poisson process with 
rate 𝜆.

• Corollary: The process has stationary and independent increments.

Poisson Process



• Theorem: Let 𝑁 ≔ {𝑁𝑡, 𝑡 ≥ 0} be a Poisson process with rate 𝜆. Then 𝑁𝑡 ≡𝐷 𝑃(λ𝑡).

• Corollary: Given 𝑁𝑡 = 𝑛 with 𝑛 ≥ 1, “unordered” jump epochs are IID uniform 
over 0, t .

Number of Jumps



• Let 𝒳 be a finite or countable state space, and define a rate matrix                       
𝑄 = {𝑞 𝑖, 𝑗 , 𝑖, 𝑗 ∈ 𝒳} s. t. 𝑞 𝑖, 𝑗 ≥ 0, ∀ 𝑖 ≠ 𝑗 and  𝑗 𝑞(𝑖, 𝑗) = 0, ∀ 𝑖.

• Definition: A CTMC with initial distribution 𝜋0 and rate matrix 𝑄 is a process 
{𝑋𝑡, 𝑡 ≥ 0} s. t. 𝑃 𝑋0 = 𝑖 = 𝜋0(𝑖), and 𝑃 𝑋𝑡+𝜖 = 𝑗 𝑋𝑡 = 𝑖, 𝑋𝑢, 𝑢 < 𝑡) =
1 i = j + ϵ𝑞 𝑖, 𝑗 + 𝑜(𝜖).

• Stopping Time and Strong Markov Property

• Construction:

– If 𝑋𝑡 = 𝑖, choose random 𝜏 that’s exponentially distributed with rate 𝑞𝑖 = −𝑞 𝑖, 𝑖 =
 𝑗≠𝑖 𝑞(𝑖, 𝑗), and time 𝑡 + 𝜏, jump to state 𝑗 ≠ 𝑖 with probability Γ 𝑖, 𝑗 ≔ 𝑞(𝑖, 𝑗)/𝑞𝑖.

Continuous Time Markov Chain (CTMC)

Starts afresh after s Starts afresh after stopping time 𝜏



• Let 𝜋𝑡 be the distribution of 𝑋𝑡 .

– Note 𝜋𝑡+𝜖 𝑖 ≈  𝑗≠𝑖 𝜋𝑡 𝑗 𝑞(𝑗, 𝑖)𝜖 + 𝜋𝑡(i)(1 − 𝑞𝑖𝜖), or 𝜋𝑡+𝜖 ≈ 𝜋𝑡(𝐼 + 𝑄𝜖).

– Hence, 
𝑑

𝑑𝑡
𝜋𝑡 = 𝜋𝑡𝑄 (Kolmogorov Forward Equation) ⇒ 𝜋𝑡 = 𝜋0𝑒

𝑄𝑡, where                 

𝑒𝑄𝑡 = 𝐼 + 𝑄𝑡 +
1

2!
𝑄2𝑡2 +

1

3!
𝑄3𝑡3 +⋯ (Taylor Series)

– This gives 𝜋𝑡 = 𝜋 ∀ 𝑡 ≥ 0 ⟺ 𝜋0 = 𝜋, π𝑄 = 0.

– Invariant distribution 𝜋 satisfies 𝜋𝑄 = 0 (flow-in = flow-out) and  𝑖 𝜋 𝑖 = 1.

• CTMC examples: Two-state example, Poisson Process

CTMC Transient and Invariant Distributions



• Theorem: For an irreducible CTMC, states are either all transient, all positive 
recurrent or all null recurrent.

• Big Theorem: Consider an irreducible CTMC over a finite or countable state 
space. Then,

a. If positive recurrent, there is a unique invariant distribution 𝜋.

b. If positive recurrent, long-term fraction of time 𝑋𝑡 = 𝑖 ≔

lim
𝑡→∞

1

𝑡
 1{𝑋𝑡 = 𝑖} 𝑑𝑡 = π(𝑖).

c. If positive recurrent, 𝜋𝑡 → 𝜋.

d. If not positive recurrent, it does not have an invariant distribution, and 
fraction of time spent in any state goes to 0.

Big Theorem for CTMC



• Discrete Time Approximation:

– Since 𝜋𝑡+𝜖 ≈ 𝜋𝑡(𝐼 + 𝑄𝜖), {𝑋𝑛𝜖, 𝑛 = 0, 1, … } is a DTMC with transition probability 
matrix 𝑃 = 𝐼 + 𝑄𝜖.

– Same invariant distribution as that of the CTMC.

• Embedded DTMC (or Jump DTMC):

• Transition Probability Matrix: Γ 𝑖, 𝑗 =  
 𝑞(𝑖, 𝑗) 𝑞𝑖 , 𝑖𝑓 𝑖 ≠ 𝑗

0, 𝑖𝑓 𝑖 = 𝑗

• Let 𝜐 be it’s invariant distribution, i.e., 𝜐 = 𝜐Γ.

• Relationships between 𝜐 and 𝜋 (the invariant distribution of 𝑋𝑡).

 𝜋 𝑖 =
 𝜐(𝑖) 𝑞𝑖

 𝑘  𝜐(𝑘) 𝑞𝑘

 𝜐 𝑖 =
𝜋(𝑖)𝑞𝑖

 𝑘 𝜋(𝑘)𝑞𝑘

• Uniformized DTMC:

• Fix 𝜆 ≥ 𝑞𝑖 ∀ 𝑖, and define 𝑃 𝑖, 𝑗 =  
 𝑞(𝑖, 𝑗) 𝜆, 𝑖𝑓 𝑖 ≠ 𝑗

1 −  𝑞𝑖 𝜆, 𝑖𝑓 𝑖 = 𝑗

 I.e., 𝑃 = 𝐼 +
1

𝜆
𝑄.

• Observe 𝜋𝑃 = 𝜋 ⇔ 𝜋𝑄 = 0.

• Applications:

 Invariant distribution of 𝑋𝑡 can be found by computing 𝑃𝑘 as 𝑘 → ∞.

 Transient distribution of 𝑋𝑡: Define CTMC 𝑌𝑡 with inter-jump times being IID 

𝐸𝑥𝑝(𝜆) and jump probabilities given by 𝑃. Then, 𝜋𝑡 =  𝑛=0
∞ 𝜋0𝑃

𝑛 (𝜆𝑡)𝑛𝑒−𝜆𝑡

𝑛!
.

Three DTMCs associated with a CTMC 



• Theorem: Assume a CTMC 𝑋𝑡 has the invariant distribution 𝜋. Then, 𝑋𝑡
reversed in time is a CTMC with the same invariant distribution, and it’s rate 

matrix  𝑄 is given by  𝑞 𝑖, 𝑗 =
𝜋 𝑗 𝑞(𝑗,𝑖)

𝜋(𝑖)
.

– Note: CTMCs in the forward and reversed directions have the same invariant 
distributions 

• Suggests the following recipe:

– Guess the invariant distribution 𝜋 for the CTMC under consideration.

– Guess the CTMC in reversed time and find it’s rate matrix  𝑄.

– Show the equation in the theorem above is satisfied.

– Proves our guesses for the invariant distribution and the CTMC in reversed time are 
correct.

• If a CTMC satisfies the detailed balance equations, it’s reversible (i.e., the rate 
matrices in the forward and reversed directions are the same).

Reversibility



• Packets/customers arrive at a single server queue according to a Poisson 
process with rate 𝜆 > 0, and their service times are IID 𝐸𝑥𝑝(𝜇).

• CTMC is transient, null recurrent or positive recurrent if 𝜆 > 𝜇, 𝜆 = 𝜇 or 
𝜆 < 𝜇, respectively.

• Assume 𝜆 < 𝜇. Then,

– Invariant Distribution: 𝜋 𝑛 = 1 − 𝜌 𝜌𝑛, 𝑛 ≥ 0, where 𝜌 =  𝜆 𝜇.

– Average # in the queue under the invariant distribution =
𝜌

1−𝜌
.

– Average delay in the system 
1

𝜇−𝜆
.

M/M/1 Queue

A realization:

State Transition Diagram:



• Consider a network of queues with 𝑁 ≥ 1 queues and 𝐶 ≥ 1 classes:

– Let 𝑋 𝑡 = {𝑋𝑖 𝑡 , 𝑖 = 1, … , 𝑁} where 𝑋𝑖(𝑡) denotes configuration of queue 𝑖 at time 𝑡.

 𝑋𝑖 𝑡 = 321231 indicates class for each customer in the queue 𝑖 from tail to head.

– External arrivals at queue 𝑖 for class 𝑐 occur according to a Poisson process with rate 𝛾𝑖
𝑐.

– All service times at queue 𝑖 are IID 𝐸𝑥𝑝(𝜇𝑖).

– After service completion at queue 𝑖, a customer of class 𝑐 is routed independently to 
queue 𝑗 as class 𝑑 with probability 𝑟𝑖,𝑗

𝑐,𝑑.

 Network departure probability after service at queue 𝑖 is 𝑟𝑖,0
𝑐 = 1 −  𝑗=1

𝑁  𝑑=1
𝐶 𝑟𝑖,𝑗

𝑐,𝑑.

– Let 𝜆𝑖
𝑐 be the rate into queue 𝑖 for class 𝑐 satisfying the flow-conservation equations                     

𝜆𝑖
𝑐 = 𝛾𝑖

𝑐 +  𝑗=1
𝑁  𝑑=1

𝐶 𝜆𝑗
𝑑𝑟𝑗,𝑖

𝑑,𝑐.

– Theorem: If the network is open (i.e., each customer eventually departs), and               
𝜆𝑖 =  𝑐=1

𝐶 𝜆𝑖
𝑐 < 𝜇𝑖, 𝑋 𝑡 is a CTMC with the unique invariant distribution 𝜋 s. t.

 𝜋 𝑥 =  𝑖=1
𝑁 𝜋𝑖(𝑥𝑖), where 𝑥 is a collection of configurations {𝑥𝑖 , 𝑖 = 1,… , 𝑁} at 

different queues, and

 𝜋𝑖 𝑥𝑖 = 𝑐1𝑐2…𝑐𝑛 = 1 −
𝜆𝑖

𝜇𝑖

𝜆𝑖
𝑐1…𝜆𝑖

𝑐𝑛

𝜇𝑖
𝑛 = 𝑝𝑖 𝑐1 …𝑝𝑖(𝑐𝑛)(1 − 𝜌𝑖)𝜌𝑖

𝑛 with 𝜌𝑖 =  𝜆𝑖 𝜇𝑖

and 𝑝𝑖 𝑐 =  𝜆𝑖
𝑐 𝜆𝑖.

– Corollary: Let 𝐿𝑖 be the queue length at queue 𝑖. Then, 𝜋 𝐿𝑖 = 𝑛𝑖 , 𝑖 = 1,… , 𝑁 =
 𝑖=1

𝑁 (1 − 𝜌𝑖) 𝜌𝑖
𝑛𝑖 , 𝜌𝑖 =  𝜆𝑖 𝜇𝑖.

Network of Queues



• Consider the following network:

– There are three queues and two types of customers.

– External arrivals occur according to Poisson processes.

– All service times at queue 𝑖 are IID 𝐸𝑥𝑝(𝜇𝑖).

Network of Queues (Example)



• Residual Time Paradox: Suppose inter-event times are IID non-negative RVs 
𝑋𝑖 , i = 1, 2,… with PDF 𝑓 𝑥 and CDF 𝐹 𝑥 , and 𝑖th moment 𝑚𝑖 , i = 1, 2,…

– After the process has been running for a long time, an observer arrives at an 
arbitrary time.

– The inter-event time during which the observer arrives has the PDF 
𝑥𝑓(𝑥)

𝑚1
.

– The residual time to the next event and age time from the last event have the 
PDF 

1−𝐹(𝑥)

𝑚1
.

• Sum of independent RVs 𝑋 and 𝑌: 𝑍 = 𝑋 + 𝑌.

– 𝑓𝑍 𝑧 𝑑𝑧 =  
−∞

∞
𝑓𝑋 x 𝑓𝑌 𝑧 − 𝑥 𝑑𝑥𝑑𝑧 ⇒ 𝑓𝑍 𝑧 =  

−∞

∞
𝑓𝑋 x 𝑓𝑌 𝑧 − 𝑥 𝑑𝑥

– 𝑓𝑍(z) = 𝑓𝑋 ∗ 𝑓𝑌(z) (i.e., 𝑓𝑍 is convolution of 𝑓𝑋 and 𝑓𝑌).

– Characteristic functions: 𝜙𝑍 𝑢 = 𝜙𝑋(𝑢)𝜙𝑌(𝑢)

• Sum of IID 𝐸𝑥𝑝 𝜆 RVs: 𝑍 = 𝑋1 +⋯+ 𝑋𝑛.
– 𝑍 has the Erlang distribution (a special case of the Gamma distribution).

– 𝑍 ≡𝐷 Γ(n, 𝜆) (PDF 𝑓𝑍 𝑧 =
𝜆𝑛𝑧𝑛−1𝑒−𝜆𝑧

𝑛−1 !
, z ≥ 0).

• Merging of Poisson processes:
– Let 𝑁1 𝑡 , … , 𝑁𝑚(𝑡) be 𝑚 independent Poisson processes with rates 𝜆1, … , 𝜆𝑚.

– Then, 𝑁 𝑡 = 𝑁1 𝑡 + ⋯+ 𝑁𝑚(𝑡) is a Poisson process with rate 𝜆1 +⋯+ 𝜆𝑚.

• Splitting (thinning) of a Poisson process:
– Let 𝑁(𝑡) be a Poisson process with rate 𝜆.

– Each arrival is included in the process 𝑁1(𝑡) if an independent 𝐵(𝑝) coin flip 
results in heads, otherwise it’s included in 𝑁2(𝑡).

– 𝑁1(𝑡) and 𝑁2(t) are independent Poisson processes with rates 𝜆𝑝 and 𝜆(1 − 𝑝), 
respectively.

Useful Facts



• Number of children of different nodes are IID with mean 𝜇.

• Theorem: Let 𝑍 be the number of nodes receiving the message.

a. If 𝜇 < 1, 𝑃 𝑍 < ∞ = 1, and 𝐸 𝑍 < ∞.

b. If 𝜇 > 1, 𝑃 𝑍 = ∞ > 0.

Optional: Spreading Rumors

Source: https://rt.live/
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Spreading of a Message
as a Random Tree



• Suppose nodes are arranged linearly, and each node needs to make a selection 
out of two choices.

– Assume node 0 is red.

• Node 𝑛 listens to the advice of node 𝑛 − 𝑘 independently with probability 𝑝𝑘.

– Majority dictates the choice, and flips a fair coin in case of a tie.

• How far influence cascades?

• Theorem: Suppose 𝑝𝑘 = 𝑝 ∈ 0, 1 ∀ 𝑘 ≥ 1. Then all nodes turn red with 
probability at least 𝜃, where 𝜃 = exp(−

𝑝

1−𝑝
).

Optional: Cascades


