EECS 126: Probability \& Random Processes Fall 2021

Networks
Shyam Parekh

Topics of Interest on Networks

- Infinite Discrete Time Markov Chains (Section 15.3)
- Poisson Process (Section 15.4)
- Continuous Time Markov Chains (Section 6.2)
- Queues (Sections 5.6, 5.7, 5.10, 6.3)
- (Optional Reading) Social Networks: Spreading Rumors (Section 5.1), Cascades (Section 5.2)

Infinite Discrete Time Markov Chains (DTMCs)

- $\{X(n), n \geq 0\}$ is a Markov Chain over an infinite State Space $X=\{0,1,2, \ldots\}$.
- Initial distribution $\pi(i), i \in \mathcal{X}$ s. t. $\pi(i) \geq 0, \sum_{i} \pi(i)=1$.
- State Transition Probability Matrix P of non-negative numbers s. t. $\sum_{j} P(i, j)=1, \forall i$.
- Irreducible and aperiodic DTMCs are defined the same way as for the finite DTMCs.
- Invariant distribution π satisfies the balance equations $\pi=\pi P$.
- A state is transient if one starts from this state, it's visited only finitely often. A state is recurrent if it's not transient.
- A recurrent state is positive recurrent if the average time between successive visits is finite, other wise it's null recurrent.
- Theorem: For an irreducible DTMC, states are either all transient, all positive recurrent or all null recurrent.
- Example: Random Walk reflected at 0.

- Transient if $p>1 / 2$, null recurrent if $p=1 / 2$, and positive recurrent if $p<1 / 2$.

Big Theorem for Infinite DTMC

- Theorem: Consider an irreducible DTMC over an infinite state space with an invariant distribution π. Then, for each $i, \pi(i)=1 / \mathrm{E}\left[T_{i} \mid \mathrm{X}(0)=\mathrm{i}\right]$, where T_{i} is the first time >0 to reach state i.
- Big Theorem: Consider an irreducible DTMC over an infinite state space. Then,

Random Walk reflected @ 0.

Poisson Process

- Definition: Let $\lambda>0$, and $\left\{S_{1}, S_{2}, \ldots\right\}$ be IID $\operatorname{Exp}(\lambda)$ RVs. Let also $T_{n}=S_{1}+\cdots+S_{n}$ for $n \geq 1$. Define $N_{t}=0$ if $t<T_{1}$, otherwise $N_{t}=\max \left\{\mathrm{n} \geq 1 \mid T_{n} \leq t\right\}, \mathrm{t} \geq 0$. Then, $N:=\left\{N_{t}, t \geq 0\right\}$ is a Poisson process with rate λ.

- Theorem (Poisson process is Memoryless): Let $N:=\left\{N_{t}, t \geq 0\right\}$ be a Poisson process with rate λ. Given $\left\{N_{s}, s \leq t\right\},\left\{N_{s+t}-N_{t}, s \geq 0\right\}$ is Poisson process with rate λ.
- Corollary: The process has stationary and independent increments.

Number of Jumps

- Theorem: Let $N:=\left\{N_{t}, t \geq 0\right\}$ be a Poisson process with rate λ. Then $N_{t} \equiv_{D} P(\lambda t)$.
- Corollary: Given $N_{t}=n$ with $n \geq 1$, "unordered" jump epochs are IID uniform over ($0, \mathrm{t}$).

Continuous Time Markov Chain (CTMC)

- Let \mathcal{X} be a finite or countable state space, and define a rate matrix $Q=\{q(i, j), i, j \in X\}$ s.t. $q(i, j) \geq 0, \forall i \neq j$ and $\sum_{j} q(i, j)=0, \forall i$.
- Definition: A CTMC with initial distribution π_{0} and rate matrix Q is a process $\left\{X_{t}, t \geq 0\right\}$ s. t. $P\left(X_{0}=i\right)=\pi_{0}(i)$, and $P\left(X_{t+\epsilon}=j \mid X_{t}=i, X_{u}, u<t\right)=$ $1\{\mathrm{i}=\mathrm{j}\}+\epsilon q(i, j)+o(\epsilon)$.
- Stopping Time and Strong Markov Property

Starts afresh after s

Starts afresh after stopping time τ

- Construction:
- If $X_{t}=i$, choose random τ that's exponentially distributed with rate $q_{i}=-q(i, i)=$ $\sum_{j \neq i} q(i, j)$, and time $t+\tau$, jump to state $j \neq i$ with probability $\Gamma(i, j):=q(i, j) / q_{i}$.

CTMC Transient and Invariant Distributions

- Let π_{t} be the distribution of X_{t}.
- Note $\pi_{t+\epsilon}(i) \approx \sum_{j \neq i} \pi_{t}(j) q(j, i) \epsilon+\pi_{t}(\mathrm{i})\left(1-q_{i} \epsilon\right)$, or $\pi_{t+\epsilon} \approx \pi_{t}(I+Q \epsilon)$.
- Hence, $\frac{d}{d t} \pi_{t}=\pi_{t} Q$ (Kolmogorov Forward Equation) $\Rightarrow \pi_{t}=\pi_{0} e^{Q t}$, where $e^{Q t}=I+Q t+\frac{1}{2!} Q^{2} t^{2}+\frac{1}{3!} Q^{3} t^{3}+\cdots$ (Taylor Series)
- This gives $\pi_{t}=\pi \forall t \geq 0 \Leftrightarrow \pi_{0}=\pi, \pi Q=0$.
- Invariant distribution π satisfies $\pi Q=0$ (flow-in = flow-out) and $\sum_{i} \pi(i)=1$.
- CTMC examples: Two-state example, Poisson Process

Big Theorem for CTMC

- Theorem: For an irreducible CTMC, states are either all transient, all positive recurrent or all null recurrent.
- Big Theorem: Consider an irreducible CTMC over a finite or countable state space. Then,
a. If positive recurrent, there is a unique invariant distribution π.
b. If positive recurrent, long-term fraction of time $\left(X_{t}=i\right):=$ $\lim _{t \rightarrow \infty} \frac{1}{t} \int 1\left\{X_{t}=i\right\} d t=\pi(i)$.
c. If positive recurrent, $\pi_{t} \rightarrow \pi$.
d. If not positive recurrent, it does not have an invariant distribution, and fraction of time spent in any state goes to 0 .

Three DTMCs associated with a CTMC

- Discrete Time Approximation:
- Since $\pi_{t+\epsilon} \approx \pi_{t}(I+Q \epsilon),\left\{X_{n \epsilon}, n=0,1, \ldots\right\}$ is a DTMC with transition probability matrix $P=I+Q \epsilon$.
- Same invariant distribution as that of the CTMC.
- Embedded DTMC (or Jump DTMC):
- Transition Probability Matrix: $\Gamma(i, j)=\left\{\begin{array}{c}q(i, j) / q_{i}, \text { if } i \neq j \\ 0, \text { if } i=j\end{array}\right.$
- Let v be it's invariant distribution, i.e., $v=v \Gamma$.
- Relationships between v and π (the invariant distribution of X_{t}).
- $\pi(i)=\frac{v(i) / q_{i}}{\sum_{k} v(k) / q_{k}}$
- $v(i)=\frac{\pi(i) q_{i}}{\sum_{k} \pi(k) q_{k}}$
- Uniformized DTMC:
- Fix $\lambda \geq q_{i} \forall i$, and define $P(i, j)=\left\{\begin{array}{l}q(i, j) / \lambda, \text { if } i \neq j \\ 1-q_{i} / \lambda, \text { if } i=j\end{array}\right.$
- I.e., $P=I+\frac{1}{\lambda} Q$.
- Observe $\pi P=\pi \Leftrightarrow \pi Q=0$.
- Applications:
- Invariant distribution of X_{t} can be found by computing P^{k} as $k \rightarrow \infty$.
- Transient distribution of X_{t} : Define CTMC Y_{t} with inter-jump times being IID $\operatorname{Exp}(\lambda)$ and jump probabilities given by P. Then, $\pi_{t}=\sum_{n=0}^{\infty} \pi_{0} P^{n} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!}$.

Reversibility

- Theorem: Assume a CTMC X_{t} has the invariant distribution π. Then, X_{t} reversed in time is a CTMC with the same invariant distribution, and it's rate matrix \tilde{Q} is given by $\tilde{q}(i, j)=\frac{\pi(j) q(j, i)}{\pi(i)}$.
- Note: CTMCs in the forward and reversed directions have the same invariant distributions
- Suggests the following recipe:
- Guess the invariant distribution π for the CTMC under consideration.
- Guess the CTMC in reversed time and find it's rate matrix \tilde{Q}.
- Show the equation in the theorem above is satisfied.
- Proves our guesses for the invariant distribution and the CTMC in reversed time are correct.
- If a CTMC satisfies the detailed balance equations, it's reversible (i.e., the rate matrices in the forward and reversed directions are the same).

M/M/1 Queue

- Packets/customers arrive at a single server queue according to a Poisson process with rate $\lambda>0$, and their service times are IID $\operatorname{Exp}(\mu)$.

A realization:

State Transition Diagram:

- CTMC is transient, null recurrent or positive recurrent if $\lambda>\mu, \lambda=\mu$ or $\lambda<\mu$, respectively.
- Assume $\lambda<\mu$. Then,
- Invariant Distribution: $\pi(n)=(1-\rho) \rho^{n}, n \geq 0$, where $\rho=\lambda / \mu$.
- Average \# in the queue under the invariant distribution $=\frac{\rho}{1-\rho}$.
- Average delay in the system $\frac{1}{\mu-\lambda}$.

Network of Queues

- Consider a network of queues with $N \geq 1$ queues and $C \geq 1$ classes:
- Let $X(t)=\left\{X_{i}(t), i=1, \ldots, N\right\}$ where $X_{i}(t)$ denotes configuration of queue i at time t.
- $X_{i}(t)=321231$ indicates class for each customer in the queue i from tail to head.
- External arrivals at queue i for class c occur according to a Poisson process with rate γ_{i}^{c}.
- All service times at queue i are IID $\operatorname{Exp}\left(\mu_{i}\right)$.
- After service completion at queue i, a customer of class c is routed independently to queue j as class d with probability $r_{i, j}^{c, d}$.
- Network departure probability after service at queue i is $r_{i, 0}^{c}=1-\sum_{j=1}^{N} \sum_{d=1}^{C} r_{i, j}^{c, d}$.
- Let λ_{i}^{c} be the rate into queue i for class c satisfying the flow-conservation equations $\lambda_{i}^{c}=\gamma_{i}^{c}+\sum_{j=1}^{N} \sum_{d=1}^{C} \lambda_{j}^{d} r_{j, i}^{d, c}$.
- Theorem: If the network is open (i.e., each customer eventually departs), and $\lambda_{i}=\sum_{c=1}^{C} \lambda_{i}^{c}<\mu_{i}, X(t)$ is a CTMC with the unique invariant distribution $\pi \mathrm{s}$. t.
- $\pi(x)=\prod_{i=1}^{N} \pi_{i}\left(x_{i}\right)$, where x is a collection of configurations $\left\{x_{i}, i=1, \ldots, N\right\}$ at different queues, and
- $\pi_{i}\left(x_{i}=c_{1} c_{2} \ldots c_{n}\right)=\left(1-\frac{\lambda_{i}}{\mu_{i}}\right) \frac{\lambda_{i}^{c_{1}} \ldots \lambda_{i}^{c_{n}}}{\mu_{i}^{n}}=p_{i}\left(c_{1}\right) \ldots p_{i}\left(c_{n}\right)\left(1-\rho_{i}\right) \rho_{i}^{n}$ with $\rho_{i}=\lambda_{i} / \mu_{i}$ and $p_{i}(c)=\lambda_{i}^{c} / \lambda_{i}$.
- Corollary: Let L_{i} be the queue length at queue i. Then, $\pi\left(L_{i}=n_{i}, i=1, \ldots, N\right)=$ $\prod_{i=1}^{N}\left(1-\rho_{i}\right) \rho_{i}^{n_{i}}, \rho_{i}=\lambda_{i} / \mu_{i}$.

Network of Queues (Example)

- Consider the following network:
- There are three queues and two types of customers.
- External arrivals occur according to Poisson processes.
- All service times at queue i are IID $\operatorname{Exp}\left(\mu_{i}\right)$.

Useful Facts

- Residual Time Paradox: Suppose inter-event times are IID non-negative RVs $X_{i}, \mathrm{i}=1,2, \ldots$ with PDF $f(x)$ and $\operatorname{CDF} F(x)$, and $i^{\text {th }}$ moment $m_{i}, \mathrm{i}=1,2, \ldots$
- After the process has been running for a long time, an observer arrives at an arbitrary time.
- The inter-event time during which the observer arrives has the PDF $\frac{x f(x)}{m_{1}}$.
- The residual time to the next event and age time from the last event have the PDF $\frac{1-F(x)}{m_{1}}$.
- Sum of independent RVs X and $Y: Z=X+Y$.
- $f_{Z}(z) d z=\int_{-\infty}^{\infty} f_{X}(\mathrm{x}) f_{Y}(z-x) d x d z \Rightarrow f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(\mathrm{x}) f_{Y}(z-x) d x$
- $f_{Z}(\mathrm{z})=f_{X} * f_{Y}(\mathrm{z})$ (i.e., f_{Z} is convolution of f_{X} and f_{Y}).
- Characteristic functions: $\phi_{Z}(u)=\phi_{X}(u) \phi_{Y}(u)$
- Sum of IID $\operatorname{Exp}(\lambda) \mathrm{RVs}: Z=X_{1}+\cdots+X_{n}$.
- Z has the Erlang distribution (a special case of the Gamma distribution).
- $Z \equiv_{D} \Gamma(\mathrm{n}, \lambda)\left(\operatorname{PDF} f_{Z}(z)=\frac{\lambda^{n} Z^{n-1} e^{-\lambda z}}{(n-1)!}, z \geq 0\right)$.
- Merging of Poisson processes:
- Let $N_{1}(t), \ldots, N_{m}(t)$ be m independent Poisson processes with rates $\lambda_{1}, \ldots, \lambda_{m}$.
- Then, $N(t)=N_{1}(t)+\cdots+N_{m}(t)$ is a Poisson process with rate $\lambda_{1}+\cdots+\lambda_{m}$.
- Splitting (thinning) of a Poisson process:
- Let $N(t)$ be a Poisson process with rate λ.
- Each arrival is included in the process $N_{1}(t)$ if an independent $B(p)$ coin flip results in heads, otherwise it's included in $N_{2}(t)$.
- $\quad N_{1}(t)$ and $N_{2}(\mathrm{t})$ are independent Poisson processes with rates λp and $\lambda(1-p)$, respectively.

Optional: Spreading Rumors

- Number of children of different nodes are IID with mean μ.

- Theorem: Let Z be the number of nodes receiving the message.
a. If $\mu<1, P(Z<\infty)=1$, and $E(Z)<\infty$.
b. If $\mu>1, P(Z=\infty)>0$.

Covid-19 - Effective Reproduction Rate (Oct 5, 2020)

Source: https://rt.live/

Optional: Cascades

- Suppose nodes are arranged linearly, and each node needs to make a selection out of two choices.
- Assume node 0 is red.
- Node n listens to the advice of node $n-k$ independently with probability p_{k}.
- Majority dictates the choice, and flips a fair coin in case of a tie.
- How far influence cascades?

- Theorem: Suppose $p_{k}=p \in(0,1] \forall k \geq 1$. Then all nodes turn red with probability at least θ, where $\theta=\exp \left(-\frac{p}{1-p}\right)$.

