EECS 126: Probability & Random Processes Fall 2021

Networks

Shyam Parekh

Topics of Interest on Networks

- Infinite Discrete Time Markov Chains (Section 15.3)
- Poisson Process (Section 15.4)
- Continuous Time Markov Chains (Section 6.2)
- Queues (Sections 5.6, 5.7, 5.10, 6.3)
- (Optional Reading) Social Networks: Spreading Rumors (Section 5.1), Cascades (Section 5.2)

Infinite Discrete Time Markov Chains (DTMCs)

- $\{X(n), n \ge 0\}$ is a Markov Chain over an infinite State Space $\mathcal{X} = \{0, 1, 2, ...\}$.
 - Initial distribution $\pi(i), i \in \mathcal{X}$ s. t. $\pi(i) \ge 0, \sum_{i} \pi(i) = 1$.
 - State Transition Probability Matrix P of non-negative numbers s. t. $\sum_{j} P(i, j) = 1, \forall i$.
- Irreducible and aperiodic DTMCs are defined the same way as for the finite DTMCs.
- Invariant distribution π satisfies the balance equations $\pi = \pi P$.
- A state is **transient** if one starts from this state, it's visited only finitely often. A state is **recurrent** if it's not transient.
- A recurrent state is **positive recurrent** if the average time between successive visits is finite, other wise it's **null recurrent**.
- Theorem: For an irreducible DTMC, states are either all transient, all positive recurrent or all null recurrent.
- Example: Random Walk reflected at 0.

- Transient if p > 1/2, null recurrent if p = 1/2, and positive recurrent if p < 1/2.

Big Theorem for Infinite DTMC

- Theorem: Consider an irreducible DTMC over an infinite state space with an invariant distribution π . Then, for each i, $\pi(i) = 1/E[T_i|X(0) = i]$, where T_i is the first time > 0 to reach state i.
- Big Theorem: Consider an irreducible DTMC over an infinite state space. Then,
 - a. If positive recurrent, there is a unique invariant distribution π .
 - b. If positive recurrent, long-term fraction of time $(X(n) = i) := \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} 1\{X(n) = i\} = \pi(i).$
 - c. If positive recurrent and aperiodic, $\pi_n \rightarrow \pi$.
 - d. If not positive recurrent, it does not have an invariant distribution, and fraction of time spent in any state goes to 0.

Random Walk reflected @ 0.

Poisson Process

• Definition: Let $\lambda > 0$, and $\{S_1, S_2, ...\}$ be IID $Exp(\lambda)$ RVs. Let also $T_n = S_1 + \dots + S_n$ for $n \ge 1$. Define $N_t = 0$ if $t < T_1$, otherwise $N_t = \max\{n \ge 1 \mid T_n \le t\}, t \ge 0$. Then, $N \coloneqq \{N_t, t \ge 0\}$ is a Poisson process with rate λ .

- Theorem (Poisson process is Memoryless): Let $N \coloneqq \{N_t, t \ge 0\}$ be a Poisson process with rate λ . Given $\{N_s, s \le t\}$, $\{N_{s+t} N_t, s \ge 0\}$ is Poisson process with rate λ .
- Corollary: The process has stationary and independent increments.

Number of Jumps

- Theorem: Let $N \coloneqq \{N_t, t \ge 0\}$ be a Poisson process with rate λ . Then $N_t \equiv_D P(\lambda t)$.
- Corollary: Given $N_t = n$ with $n \ge 1$, "unordered" jump epochs are IID uniform over (0, t).

Continuous Time Markov Chain (CTMC)

- Let \mathcal{X} be a finite or countable state space, and define a rate matrix $Q = \{q(i,j), i, j \in \mathcal{X}\}$ s. t. $q(i,j) \ge 0, \forall i \ne j$ and $\sum_{i} q(i,j) = 0, \forall i$.
- Definition: A CTMC with initial distribution π_0 and rate matrix Q is a process $\{X_t, t \ge 0\}$ s. t. $P(X_0 = i) = \pi_0(i)$, and $P(X_{t+\epsilon} = j \mid X_t = i, X_u, u < t) = 1$ {i = j} + $\epsilon q(i, j) + o(\epsilon)$.
- Stopping Time and Strong Markov Property

- Construction:
 - If $X_t = i$, choose random τ that's exponentially distributed with rate $q_i = -q(i, i) = \sum_{j \neq i} q(i, j)$, and time $t + \tau$, jump to state $j \neq i$ with probability $\Gamma(i, j) \coloneqq q(i, j)/q_i$.

CTMC Transient and Invariant Distributions

- Let π_t be the distribution of X_t .
 - Note $\pi_{t+\epsilon}(i) \approx \sum_{j \neq i} \pi_t(j) q(j,i)\epsilon + \pi_t(i)(1-q_i\epsilon)$, or $\pi_{t+\epsilon} \approx \pi_t(l+Q\epsilon)$.
 - Hence, $\frac{d}{dt}\pi_t = \pi_t Q$ (Kolmogorov Forward Equation) $\Rightarrow \pi_t = \pi_0 e^{Qt}$, where $e^{Qt} = I + Qt + \frac{1}{2!}Q^2t^2 + \frac{1}{3!}Q^3t^3 + \cdots$ (Taylor Series)
 - This gives $\pi_t = \pi \ \forall \ t \ge 0 \Leftrightarrow \pi_0 = \pi, \pi Q = 0.$
 - Invariant distribution π satisfies $\pi Q = 0$ (flow-in = flow-out) and $\sum_i \pi(i) = 1$.
- CTMC examples: Two-state example, Poisson Process

Big Theorem for CTMC

- **Theorem:** For an irreducible CTMC, states are either all transient, all positive recurrent or all null recurrent.
- Big Theorem: Consider an irreducible CTMC over a finite or countable state space. Then,
 - a. If positive recurrent, there is a unique invariant distribution π .
 - b. If positive recurrent, long-term fraction of time $(X_t = i) := \lim_{t \to \infty} \frac{1}{t} \int 1\{X_t = i\} dt = \pi(i).$
 - c. If positive recurrent, $\pi_t \rightarrow \pi$.
 - d. If not positive recurrent, it does not have an invariant distribution, and fraction of time spent in any state goes to 0.

Three DTMCs associated with a CTMC

- Discrete Time Approximation:
 - Since $\pi_{t+\epsilon} \approx \pi_t(I+Q\epsilon)$, $\{X_{n\epsilon}, n = 0, 1, ...\}$ is a DTMC with transition probability matrix $P = I + Q\epsilon$.
 - Same invariant distribution as that of the CTMC.
- Embedded DTMC (or Jump DTMC):
 - Transition Probability Matrix: $\Gamma(i,j) = \begin{cases} q(i,j)/q_i, & \text{if } i \neq j \\ 0, & \text{if } i = j \end{cases}$
 - Let v be it's invariant distribution, i.e., $v = v\Gamma$.
 - Relationships between v and π (the invariant distribution of X_t).

•
$$\pi(i) = \frac{v(i)/q_i}{\sum_k v(k)/q_k}$$

•
$$v(i) = \frac{\pi(i)q_i}{\sum_k \pi(k)q_k}$$

• Uniformized DTMC:

Fix
$$\lambda \ge q_i \forall i$$
, and define $P(i,j) = \begin{cases} q(i,j)/\lambda, & \text{if } i \ne j \\ 1 - q_i/\lambda, & \text{if } i = j \end{cases}$
• I.e., $P = I + \frac{1}{\lambda}Q$.

- Observe $\pi P = \pi \Leftrightarrow \pi Q = 0$.
- Applications:
 - Invariant distribution of X_t can be found by computing P^k as $k \to \infty$.
 - Transient distribution of X_t : Define CTMC Y_t with inter-jump times being IID $Exp(\lambda)$ and jump probabilities given by P. Then, $\pi_t = \sum_{n=0}^{\infty} \pi_0 P^n \frac{(\lambda t)^n e^{-\lambda t}}{n!}$.

Reversibility

- **Theorem:** Assume a CTMC X_t has the invariant distribution π . Then, X_t reversed in time is a CTMC with the same invariant distribution, and it's rate matrix \tilde{Q} is given by $\tilde{q}(i,j) = \frac{\pi(j)q(j,i)}{\pi(i)}$.
 - Note: CTMCs in the forward and reversed directions have the same invariant distributions
- Suggests the following recipe:
 - Guess the invariant distribution π for the CTMC under consideration.
 - Guess the CTMC in reversed time and find it's rate matrix \tilde{Q} .
 - Show the equation in the theorem above is satisfied.
 - Proves our guesses for the invariant distribution and the CTMC in reversed time are correct.
- If a CTMC satisfies the detailed balance equations, it's reversible (i.e., the rate matrices in the forward and reversed directions are the same).

M/M/1 Queue

• Packets/customers arrive at a single server queue according to a Poisson process with rate $\lambda > 0$, and their service times are IID $Exp(\mu)$.

- CTMC is transient, null recurrent or positive recurrent if $\lambda > \mu$, $\lambda = \mu$ or $\lambda < \mu$, respectively.
- Assume $\lambda < \mu$. Then,
 - Invariant Distribution: $\pi(n) = (1 \rho)\rho^n$, $n \ge 0$, where $\rho = \lambda/\mu$.
 - Average # in the queue under the invariant distribution = $\frac{\rho}{1-\rho}$.
 - Average delay in the system $\frac{1}{\mu \lambda}$.

Network of Queues

- Consider a network of queues with $N \ge 1$ queues and $C \ge 1$ classes:
 - Let $X(t) = \{X_i(t), i = 1, ..., N\}$ where $X_i(t)$ denotes configuration of queue *i* at time *t*.
 - $X_i(t) = 321231$ indicates class for each customer in the queue *i* from tail to head.
 - External arrivals at queue *i* for class *c* occur according to a Poisson process with rate γ_i^c .
 - All service times at queue *i* are IID $Exp(\mu_i)$.
 - After service completion at queue *i*, a customer of class *c* is routed independently to queue *j* as class *d* with probability $r_{i,i}^{c,d}$.
 - Network departure probability after service at queue *i* is $r_{i,0}^c = 1 \sum_{j=1}^N \sum_{d=1}^C r_{i,j}^{c,d}$.
 - Let λ_i^c be the rate into queue *i* for class *c* satisfying the flow-conservation equations $\lambda_i^c = \gamma_i^c + \sum_{j=1}^N \sum_{d=1}^C \lambda_j^d r_{j,i}^{d,c}$.
 - **Theorem:** If the network is open (i.e., each customer eventually departs), and $\lambda_i = \sum_{c=1}^{C} \lambda_i^c < \mu_i$, X(t) is a CTMC with the unique invariant distribution π s. t.
 - $\pi(x) = \prod_{i=1}^{N} \pi_i(x_i)$, where x is a collection of configurations $\{x_i, i = 1, ..., N\}$ at different queues, and
 - $\pi_i(x_i = c_1 c_2 \dots c_n) = \left(1 \frac{\lambda_i}{\mu_i}\right) \frac{\lambda_i^{c_1} \dots \lambda_i^{c_n}}{\mu_i^n} = p_i(c_1) \dots p_i(c_n)(1 \rho_i)\rho_i^n$ with $\rho_i = \lambda_i/\mu_i$ and $p_i(c) = \lambda_i^c/\lambda_i$.
 - **Corollary:** Let L_i be the queue length at queue *i*. Then, $\pi(L_i = n_i, i = 1, ..., N) = \prod_{i=1}^{N} (1 \rho_i) \rho_i^{n_i}, \rho_i = \lambda_i / \mu_i$.

Network of Queues (Example)

- Consider the following network:
 - There are three queues and two types of customers.
 - External arrivals occur according to Poisson processes.
 - All service times at queue *i* are IID $Exp(\mu_i)$.

Useful Facts

- Residual Time Paradox: Suppose inter-event times are IID non-negative RVs X_i , i = 1, 2, ... with PDF f(x) and CDF F(x), and i^{th} moment m_i , i = 1, 2, ...
 - After the process has been running for a long time, an observer arrives at an arbitrary time.
 - The inter-event time during which the observer arrives has the PDF $\frac{xf(x)}{m}$.
 - The residual time to the next event and age time from the last event have the PDF $\frac{1-F(x)}{m_1}$.
- Sum of independent RVs X and Y: Z = X + Y.
 - $f_Z(z)dz = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x)dxdz \Rightarrow f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x)dx$
 - $f_Z(z) = f_X * f_Y(z)$ (i.e., f_Z is convolution of f_X and f_Y).
 - Characteristic functions: $\phi_Z(u) = \phi_X(u)\phi_Y(u)$
- Sum of IID $Exp(\lambda)$ RVs: $Z = X_1 + \dots + X_n$.
 - Z has the Erlang distribution (a special case of the Gamma distribution).
 - $Z \equiv_D \Gamma(n, \lambda)$ (PDF $f_Z(z) = \frac{\lambda^n z^{n-1} e^{-\lambda z}}{(n-1)!}$, $z \ge 0$).
- Merging of Poisson processes:
 - Let $N_1(t), \dots, N_m(t)$ be *m* independent Poisson processes with rates $\lambda_1, \dots, \lambda_m$.
 - Then, $N(t) = N_1(t) + \dots + N_m(t)$ is a Poisson process with rate $\lambda_1 + \dots + \lambda_m$.
- Splitting (thinning) of a Poisson process:
 - Let N(t) be a Poisson process with rate λ .
 - Each arrival is included in the process $N_1(t)$ if an independent B(p) coin flip results in heads, otherwise it's included in $N_2(t)$.
 - $N_1(t)$ and $N_2(t)$ are independent Poisson processes with rates λp and $\lambda(1-p)$, respectively.

Optional: Spreading Rumors

• Number of children of different nodes are IID with mean μ .

- Theorem: Let Z be the number of nodes receiving the message.
 - a. If $\mu < 1$, $P(Z < \infty) = 1$, and $E(Z) < \infty$.
 - b. If $\mu > 1$, $P(Z = \infty) > 0$.

Optional: Cascades

- Suppose nodes are arranged linearly, and each node needs to make a selection out of two choices.
 - Assume node 0 is red.
- Node *n* listens to the advice of node n k independently with probability p_k .
 - Majority dictates the choice, and flips a fair coin in case of a tie.
- How far influence cascades?

• Theorem: Suppose $p_k = p \in (0, 1] \forall k \ge 1$. Then all nodes turn red with probability at least θ , where $\theta = \exp(-\frac{p}{1-p})$.