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Topics of Interest on Networks

Infinite Discrete Time Markov Chains (Section 15.3)
Poisson Process (Section 15.4)

Continuous Time Markov Chains (Section 6.2)
Queues (Sections 5.6, 5.7, 5.10, 6.3)

(Optional Reading) Social Networks: Spreading Rumors (Section 5.1), Cascades
(Section 5.2)



Infinite Discrete Time Markov Chains (DTMCs)

{X(n),n = 0} is a Markov Chain over an infinite State Space X = {0,1,2,...}.
— Initial distribution (i),i € X' s. t. w(i) = 0,); m(i) = 1.
— State Transition Probability Matrix P of non-negative numberss. t. 3, P(i,j) = 1,V i.

Irreducible and aperiodic DTMCs are defined the same way as for the finite DTMCs.
Invariant distribution i satisfies the balance equations m = mP.

A state is transient if one starts from this state, it’s visited only finitely often. A
state is recurrent if it’s not transient.

A recurrent state is positive recurrent if the average time between successive visits
is finite, other wise it’s null recurrent.

Theorem: For an irreducible DTMC, states are either all transient, all positive
recurrent or all null recurrent.

Example: Random Walk reflected at 0.
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— Transientif p > 1/2, null recurrent if p = 1/2, and positive recurrentif p < 1/2.



Big Theorem for Infinite DTMC

Theorem: Consider an irreducible DTMC over an infinite state space with an
invariant distribution 7. Then, for each i, m(i) = 1/E[T;|X(0) = i], where T; is
the first time > 0 to reach state i.
Big Theorem: Consider an irreducible DTMC over an infinite state space. Then,
a. If positive recurrent, there is a unique invariant distribution .
b. If positive recurrent, long-term fraction of time (X(n) = i) :=
R . .

Jim =¥nZ0 1{X () = i} = n().

c. If positive recurrent and aperiodic, T, — .

d. If not positive recurrent, it does not have an invariant distribution, and
fraction of time spent in any state goes to 0.

Random Walk reflected @ O.
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Poisson Process

* Definition: Let A > 0, and {S;, S5, ...} be IID Exp(A1) RVs. Letalso T, = §; + -+ S,
forn > 1. Define N, = 0if t < Ty, otherwise Ny = max{n > 1| T, < t},t = 0.
Then, N := {N;, t = 0} is a Poisson process with rate A.
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* Theorem (Poisson process is Memoryless): Let N := {N;,t = 0} be a Poisson
process with rate A. Given {N,s < t}, {Ng,+ — N;, s = 0} is Poisson process with
rate A.

* Corollary: The process has stationary and independent increments.
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Number of Jumps

Theorem: Let N := {N;,t = 0} be a Poisson process with rate 1. Then N, =p P(At).

Corollary: Given Ny = nwithn = 1, “unordered” jump epochs are IID uniform
over (0,t).



Continuous Time Markov Chain (CTMC)
* Let X be a finite or countable state space, and define a rate matrix
Q=1{q(i,j),i,j €X}s.t.q((,j) =0,Vi#jand};q(ij) =0,V

* Definition: A CTMC with initial distribution 1y and rate matrix Q is a process
X, t =2 0}s.t. P(Xy =i) =my(i),and PXiye = j | X = 1, X, u < t) =
1{i=j} +€q(i,j) + o(e).

* Stopping Time and Strong Markov Property
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* Construction:

— If X; =i, choose random 7 that’s exponentially distributed with rate q; = —q(i, i) =
2j=iq(i,J), and time ¢ + 7, jump to state j # i with probability I'(i, j) == q(i,j)/q;-
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CTMC Transient and Invariant Distributions

Let i, be the distribution of X;.
— Note i e(D) = Xjui me (DU, D)€ + me(D)(1 — qi€), or ey e = e (I + Q6).

— Hence, %nt = 1, Q (Kolmogorov Forward Equation) = m, = mye?t, where
t _ 1122, 173,3 :
et =1+ 0Qt+ 5 Q%% + Q%% + -+ (Taylor Series)
— Thisgivesm, =nVt=>0< my =mn,nQ =0.

— Invariant distribution 7 satisfies 1Q = 0 (flow-in = flow-out) and }; w(i) = 1.

CTMC examples: Two-state example, Poisson Process



Big Theorem for CTMC

* Theorem: For an irreducible CTMC, states are either all transient, all positive
recurrent or all null recurrent.

* Big Theorem: Consider an irreducible CTMC over a finite or countable state
space. Then,

a. If positive recurrent, there is a unique invariant distribution .

b. If positive recurrent, long-term fraction of time (X; = i) =
lim = [ 1{X, = i} dt = 7(0).
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c. If positive recurrent, T, — .

d. If not positive recurrent, it does not have an invariant distribution, and
fraction of time spent in any state goes to 0.



Three DTMCs associated with a CTMC

* Discrete Time Approximation:

— Since iy = (I + Q€), {Xpe,n = 0,1, ...} is a DTMC with transition probability
matrix P = I + Qe.

— Same invariant distribution as that of the CTMC.
* Embedded DTMC (or Jump DTMC):
q(i,))/quif i #j
0,ifi=j
* Letw beit’s invariant distribution, i.e., v = vT'.

* Transition Probability Matrix: T'(i, j) = {

* Relationships between v and m (the invariant distribution of X;).
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* Uniformized DTMC:
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Fix A > q; V i, and define P(i, j) {1 L a/Aifi=]
1
= le,P=1 +EQ'
* ObservenP = & nQ = 0.
* Applications:
= |nvariant distribution of X; can be found by computing P¥ as k — oo.

= Transient distribution of X;: Define CTMC Y; with inter-jump times being IID
PTl (/'lt)ne‘“
n! )

Exp(A) and jump probabilities given by P. Then, m; = Ym—p o



Reversibility

Theorem: Assume a CTMC X; has the invariant distribution . Then, X,
reversed in time is a CTMC with the same invariant distribution, and it’s rate
n(j)q(j,i)
(i)
— Note: CTMCs in the forward and reversed directions have the same invariant
distributions

matrix Q is given by §(i,j) =

Suggests the following recipe:
— Guess the invariant distribution  for the CTMC under consideration.
—  Guess the CTMC in reversed time and find it’s rate matrix Q.
— Show the equation in the theorem above is satisfied.
— Proves our guesses for the invariant distribution and the CTMC in reversed time are
correct.

If a CTMC satisfies the detailed balance equations, it’s reversible (i.e., the rate
matrices in the forward and reversed directions are the same).



M/M/1 Queue

» Packets/customers arrive at a single server queue according to a Poisson
process with rate A > 0, and their service times are IID Exp(u).
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* CTMCiis transient, null recurrent or positive recurrent if A > u,A = por
A < u, respectively.

* Assume A < u. Then,

— Invariant Distribution: m(n) = (1 — p)p™,n = 0, where p = 1/p.

— Average # in the queue under the invariant distribution = £

1-p
. 1
— Average delay in the system vy



Network of Queues

* Consider a network of queues with N > 1 queues and C = 1 classes:

Let X(t) = {X;(t),i = 1, ..., N} where X;(t) denotes configuration of queue i at time t.

»  X;(t) = 321231 indicates class for each customer in the queue i from tail to head.

External arrivals at queue i for class ¢ occur according to a Poisson process with rate y;.

All service times at queue i are IID Exp(y;).

After service completion at queue i, a customer of class c is routed independently to
queue j as class d with probability rl-c}-d.

= Network departure probability after service at queue i is rifo =1- ?’=1 Zg=1 ricj’-d.

Let A7 be the rate into queue i for class c satisfying the flow-conservation equations

c _..cC N C d..d.c
A =vi +Zjm1 Za= AT

Theorem: If the network is open (i.e., each customer eventually departs), and

A =Y, A5 < g, X(t) is a CTMC with the unique invariant distribution 7 s. t.

= 7(x) = [, m;(x;), where x is a collection of configurations {x;,i = 1, ..., N} at
different queues, and

A\ A LA
" (X =C1Cp . Cp) = (1 - —‘)¥

P il (c1) . pi(cn) (A — pp)pi* with p; = 4;/p;
and p;(c) = A{/4;.

Corollary: Let L; be the queue length at queue i. Then, 7(L; = n;, i =1,..,N) =
N n o_
i=1(L—p) p; Y pi = Ai/ -



Network of Queues (Example)

* Consider the following network:
There are three queues and two types of customers.
External arrivals occur according to Poisson processes.

— All service times at queue i are IID Exp(y;).
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Useful Facts

Residual Time Paradox: Suppose inter-event times are 11D non-negative RVs
X;,i=1,2,...with PDF f(x) and CDF F(x), and i™ moment m;,i=1,2,..

— After the process has been running for a long time, an observer arrives at an
arbitrary time.

— The inter-event time during which the observer arrives has the PDF %(x)
1

— The residual time to the next event and age time from the last event have the

pDF 12X
my

Sum of independent RVs X andY:Z =X +Y.
- fr(Ddz = [ f Ofy(z = x)dxdz > f,(2) = [ fx O fy(z — x)dx

- f7(2) = fx * fy(2) (i.e., f7 is convolution of fyx and fy).
— Characteristic functions: ¢z (u) = ¢x (W) Py (u)

Sumof IID Exp(A)RVs: Z = X; + -+ + X,,.
- Z has the Erlang distribution (a special case of the Gamma distribution).

n,n-1,-1z
- 2= T(0,2) (POF () =222 2> 0),

n—1)!

Merging of Poisson processes:
— Let Ny(t), ..., Ny (t) be m independent Poisson processes with rates A4, ..., 1.
— Then, N(t) = N;(t) + -+ + N,,,(t) is a Poisson process with rate A; + -+ + A,,.

Splitting (thinning) of a Poisson process:
— Let N(t) be a Poisson process with rate A.

— Each arrival is included in the process N;(t) if an independent B(p) coin flip
results in heads, otherwise it’s included in N, (t).

- N;(t) and N,(t) are independent Poisson processes with rates Ap and A(1 — p),
respectively.



Optional: Spreading Rumors

Number of children of different nodes are IID with mean p.

Spreading of a Message
as a Random Tree

Theorem: Let Z be the number of nodes receiving the message.
a. fu<1,P(Z<w) =1,andE(Z) < .
b. Ifu>1,P(Z=0)>0.
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Optional: Cascades

Suppose nodes are arranged linearly, and each node needs to make a selection
out of two choices.

— Assume node 0 is red.

Node n listens to the advice of node n — k independently with probability pj.

— Majority dictates the choice, and flips a fair coin in case of a tie.

How far influence cascades?
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Theorem: Suppose p, = p € (0,1] V k = 1. Then all nodes turn red with
probability at least 8, where 8 = exp(— 1%?).



