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• Tracking Problem (Section 9.1 & 9.2)

• LLSE (Section 9.3)

• Linear Regression (Section 9.4)

• MMSE (Section 9.6)

• Updating LLSE (Section 10.1)

• Kalman Filter (Kalman Filter Notes*)

* Lecture will be based on the Kalman Filter Notes posted on the course website. 
Sections 9.8 and 10.2 can be used as references.

Topics Covered in Lectures on Tracking



• Let (𝑋, 𝑌) be a pair of continuous RVs related to a system, and we want to 
estimate 𝑋 based on the observed value 𝑌 by

–  𝑋 = 𝑔(𝑌) such that expected cost C g ≔ 𝐸(𝑐 𝑋, 𝑔(𝑌) ) is minimized for a given cost 
function 𝑐.

– Squared Error cost: 𝑐 𝑋,  𝑋 = |𝑋 −  𝑋|2 for 𝑋 ∈ ℛ or ∥ 𝑋 −  𝑋 ∥2 for 𝑋 ∈ ℛ𝑑.

– With squared error cost and minimizing 𝐶 𝑔 over arbitrary function 𝑔,  𝑋 is the 
Minimum Mean Squared Error (MMSE) Estimate of 𝑋 given 𝑌.

– With squared error cost and minimizing 𝐶(𝑔) where 𝑔 limited to linear functions of 𝑌
(i.e.,  𝑋 = 𝑎 + 𝑏𝑌 for some 𝑎 and 𝑏),  𝑋 is the Linear Least Squares Error (LLSE) Estimate 
of 𝑋 given 𝑌.

• Different formulations:
– Known joint distribution of (𝑋, 𝑌).

– Offline: Observe set of samples 𝑋𝑖 , 𝑌𝑖 , 𝑖 = 1, 2, … , 𝐾.

– Online: Observe successive samples (𝑋𝑛, 𝑌𝑛).

• Examples:
– Estimate location based on GPS signals.

– Estimate speed based on radar signals.

– Estimate state of vehicle based on sensor signals.

Problem Statement



• We are looking for  𝑋 = 𝑎 + 𝑏𝑌 that minimizes 𝐸( 𝑋 − 𝑎 − 𝑏𝑌 2) over ∀ 𝑎, 𝑏 ∈ ℛ
assuming we know joint distribution of 𝑋, 𝑌 .

– 𝐿 𝑋 𝑌] denotes this estimate.

• Theorem: Assuming 𝑣𝑎𝑟(𝑌) ≠ 0,

𝐿 𝑋 𝑌 = 𝐸 𝑋 +
𝑐𝑜𝑣(𝑋,𝑌)

𝑣𝑎𝑟(𝑌)
(𝑌 − 𝐸 𝑌 ).

• Example: 𝑌 = 𝛼𝑋 + 𝑍, where 𝑋 and 𝑍 are zero-mean & independent RVs.

• Example: 𝑋 = 𝛼𝑌 + 𝛽𝑌2, where 𝑌 ≡𝐷 𝑈[0, 1].

Linear Least Squares Error (LLSE) Estimate



• 𝐿 𝑋 𝑌 is the projection of 𝑋 onto the subspace ℒ(𝑌) of linear functions of 𝑌.

– Define 𝐸(𝑉𝑊) as the inner product of two RVs 𝑉 and 𝑊.

– 𝑉 and 𝑊 are orthogonal if 𝐸 𝑉𝑊 = 0.

– Projection Property: 𝑋 − 𝐿[𝑋|𝑌] is orthogonal to every linear function of 𝑌.

– 𝐿[𝑋|𝑌] is the closest point to 𝑋 in ℒ(𝑌).

Projection



• In stead of knowing the joint distribution, suppose we observe IID samples 
𝑋𝑖 , 𝑌𝑖 , 𝑖 = 1,… , 𝐾.

• Our goal is to choose 𝑎 and 𝑏 that minimizes 
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• Theorem: As the number of samples increases the linear regression approaches 
LLSE estimate.

Regression



• For now, assume we know the joint distribution of (𝑋, 𝑌).

• Problem: Find function 𝑔 such that 𝑔(𝑌) minimizes 𝐸 𝑋 − 𝑔 𝑌 2 .

– The best solution 𝑔(𝑌) is called MMSE of 𝑋 given 𝑌.

• Theorem: MMSE of 𝑋 given 𝑌 is given by 𝑔 𝑌 = 𝐸 𝑋 𝑌].

• Recall 𝐸[𝑋|𝑌] is an RV, and 𝐸 𝑋 𝑌 = 𝑦 =  −∞

∞
𝑥𝑓𝑋|𝑌 x y dx, where 

𝑓𝑋|𝑌 x y =
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑌(𝑦)
.

• Lemma (Orthogonality Property of MMSE):

i. For any function 𝜙(. ), 𝐸 𝑋 − 𝐸 𝑋 𝑌 𝜙 𝑌 = 0.

ii. Also, if 𝑔(𝑌) is such that 𝐸 𝑋 − 𝑔 𝑌 𝜙 𝑌 = 0 ∀ 𝜙(. ), 𝑔 𝑌 = 𝐸[𝑋|𝑌].

• Fact: 𝜙(𝑌) is MMSE of 𝑋 given 𝑌 if and only if 𝐸[𝑋 − 𝜙 𝑌 |𝑌] = 0.

Minimum Mean Squared Error (MMSE) Estimate

𝑋, 𝑌 is picked uniformly in the shaded area.



• Properties:

a. Linearity: 𝐸 𝑎1𝑋1 + 𝑎2𝑋2 𝑌 = 𝑎1𝐸 𝑋1 𝑌 + 𝑎2𝐸[𝑋2|𝑌].

b. Factoring: 𝐸 ℎ 𝑌 𝑋 𝑌 = ℎ 𝑌 𝐸[𝑋|𝑌].

c. Independence: If 𝑋 and 𝑌 are independent, 𝐸 𝑋 𝑌 = 𝐸(𝑋).

d. Smoothing: 𝐸 𝐸 𝑋 𝑌 = 𝐸(𝑋).

e. Tower: 𝐸 𝐸 𝑋 𝑌, 𝑍 𝑌 = 𝐸[𝑋|𝑌].

• Example: Let 𝑋, 𝑌 be IID 𝑈[0, 1]. Find 𝐸[(𝑋 + 2𝑌)2|Y].

• Example: Let 𝑋, 𝑌, 𝑍 be IID. Find 𝐸[𝑋|𝑋 + 𝑌 + 𝑍].

Properties of Conditional Expectation



• Theorem: Let 𝑋, 𝑌 be JG RVs. Then,

E X Y = 𝐿 𝑋 𝑌 = 𝐸 𝑋 +
𝑐𝑜𝑣(𝑋,𝑌)

𝑣𝑎𝑟(𝑌)
(𝑌 − 𝐸 𝑌 ).

MMSE for Jointly Gaussian RVs



• Theorem (LLSE Orthogonal Update): Assume that 𝑋, 𝑌, 𝑍 are zero-mean RVs, 
and that 𝑌, 𝑍 are orthogonal. Then, 𝐿 𝑋 𝑌, 𝑍 = 𝐿 𝑋 𝑌 + 𝐿[𝑋|𝑍].

• Theorem (LLSE General Update): Assume that 𝑋, 𝑌, 𝑍 are zero-mean RVs. 
Then, 𝐿 𝑋 𝑌, 𝑍 = 𝐿 𝑋 𝑌 + 𝐿[𝑋|𝑍 − 𝐿[𝑍|𝑌]].

• LLSE Properties:

a. 𝐿 𝑎1𝑋1 + 𝑎2𝑋2 𝑌 = 𝑎1𝐿 𝑋1 𝑌 + 𝑎2𝐿[𝑋2|𝑌].

b. 𝐿 𝐿 𝑋 𝑌, 𝑍 𝑌 = 𝐿[𝑋|𝑌].

c. If 𝑋, 𝑌 are uncorrelated, 𝐿 𝑋 𝑌 = 𝐸(𝑋).

Important Results for LLSE



• Consider a system with state 𝑥𝑛 and output 𝑦𝑛:

𝑥𝑛 = 𝑎𝑥𝑛−1 + 𝑣𝑛, 𝑎 < 1, and

𝑦𝑛 = 𝑐𝑥𝑛 + 𝑤𝑛, n ≥ 1, where

𝑥0, {𝑣𝑛}𝑛=1
∞ , {𝑤𝑛}𝑛=1

∞ are orthogonal zero-mean RVs,

with 𝐸(𝑣𝑛
2) = 𝜎𝑣

2, 𝐸(𝑤𝑛
2) = 𝜎𝑤

2 .

Find  𝑥n|n ≔ 𝐿 𝑥𝑛 𝑦1, … , 𝑦𝑛 , n ≥ 1, recursively.

• Examples: Particle Positon, Chemical Reaction, Econometry, …

• Solution (assuming 𝑐 = 1):

Compute  𝑥1|1 and iterate for 𝑛 ≥ 2 using

 𝑥n|n = 𝑎 𝑥n-1|n-1  +𝑘𝑛(𝑦𝑛 − 𝑎 𝑥n-1|n-1), where 𝑘𝑛’s can be computed offline.

Compute 𝜎1|1
2 and iterate for 𝑛 ≥ 2 using

𝐸((𝑥𝑛 −  𝑥n|n-1)
2) =: 𝜎𝑛|𝑛−1

2 = 𝑎2𝜎𝑛−1|𝑛−1
2 + 𝜎𝑣

2

𝑘𝑛 =
𝜎𝑛|𝑛−1

2

𝜎𝑛|𝑛−1
2 +𝜎𝑤

2

𝐸((𝑥𝑛 −  𝑥n|n)
2) =: 𝜎𝑛|𝑛

2 = 𝜎𝑛|𝑛−1
2 (1 − 𝑘𝑛)

• Example: Obtain  𝑥1|1 and 𝜎1|1
2 for initializing the KF recursions when 𝑥0 = 0.

Scalar Kalman Filter (KF)



• Consider a system with state 𝑋𝑛 and output 𝑌𝑛:

𝑋𝑛 = 𝐴𝑋𝑛−1 + 𝑉𝑛, and

𝑌𝑛 = 𝐶𝑋𝑛 + 𝑊𝑛, n ≥ 1, where

𝑋0, {𝑉𝑛}𝑛=1
∞ , {𝑊𝑛}𝑛=1

∞ are orthogonal zero-mean Random Vectors,

with Σ𝑣 and Σ𝑊 being the covariance matrices for each 𝑉𝑛 and 𝑊𝑛, resp.

Find  𝑋n|n ≔ 𝐿 𝑋𝑛 𝑌1, … , 𝑌𝑛 , n ≥ 1, recursively.

• Solution:

Compute  𝑋1|1 and iterate for 𝑛 ≥ 2 using

 𝑋n|n = 𝐴  𝑋n-1|n-1  +𝐾𝑛(𝑌𝑛 − 𝐶𝐴  𝑋n-1|n-1), where 𝐾𝑛’s can be computed offline.

Compute Σ1|1 and iterate for 𝑛 ≥ 2 using

𝑐𝑜𝑣(𝑋𝑛 −  𝑋n|n-1) ≔ Σ𝑛|𝑛−1 = 𝐴Σ𝑛−1|𝑛−1𝐴
′ + Σ𝑉

𝐾𝑛 = Σ𝑛|𝑛−1𝐶′(𝐶Σ𝑛|𝑛−1𝐶
′ + Σ𝑊)−1

𝑐𝑜𝑣(𝑋𝑛 −  𝑋n|n) ≔ Σ𝑛|𝑛 = (𝐼 − 𝐾𝑛𝐶)Σ𝑛|𝑛−1

Vector Kalman Filter (KF)














