EECS 126: Probability & Random Processes Fall 2021

Tracking

Shyam Parekh

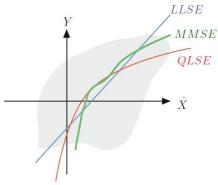
Topics Covered in Lectures on Tracking

- Tracking Problem (Section 9.1 & 9.2)
- LLSE (Section 9.3)
- Linear Regression (Section 9.4)
- MMSE (Section 9.6)
- Updating LLSE (Section 10.1)
- Kalman Filter (Kalman Filter Notes*)

* Lecture will be based on the Kalman Filter Notes posted on the course website. Sections 9.8 and 10.2 can be used as references.

Problem Statement

- Let (*X*, *Y*) be a pair of continuous RVs related to a system, and we want to estimate *X* based on the observed value *Y* by
 - $\hat{X} = g(Y)$ such that expected cost $C(g) \coloneqq E(c(X, g(Y)))$ is minimized for a given cost function c.
 - Squared Error cost: $c(X, \hat{X}) = |X \hat{X}|^2$ for $X \in \mathcal{R}$ or $||X \hat{X}||^2$ for $X \in \mathcal{R}^d$.
 - With squared error cost and minimizing C(g) over arbitrary function g, \hat{X} is the Minimum Mean Squared Error (MMSE) Estimate of X given Y.
 - With squared error cost and minimizing C(g) where g limited to linear functions of Y (i.e., $\hat{X} = a + bY$ for some a and b), \hat{X} is the Linear Least Squares Error (LLSE) Estimate of X given Y.



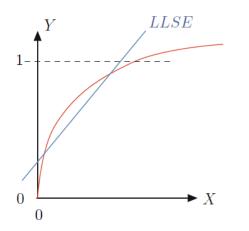
- Different formulations:
 - Known joint distribution of (X, Y).
 - Offline: Observe set of samples (X_i, Y_i) , i = 1, 2, ..., K.
 - Online: Observe successive samples (X_n, Y_n) .
- Examples:
 - Estimate location based on GPS signals.
 - Estimate speed based on radar signals.
 - Estimate state of vehicle based on sensor signals.

Linear Least Squares Error (LLSE) Estimate

- We are looking for $\hat{X} = a + bY$ that minimizes $E(|X a bY|^2)$ over $\forall a, b \in \mathcal{R}$ assuming we know joint distribution of (X, Y).
 - L[X|Y] denotes this estimate.
- Theorem: Assuming $var(Y) \neq 0$,

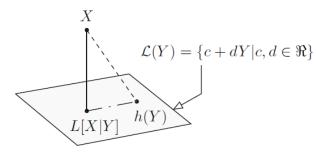
$$L[X|Y] = E(X) + \frac{cov(X,Y)}{var(Y)}(Y - E(Y)).$$

- Example: $Y = \alpha X + Z$, where X and Z are zero-mean & independent RVs.
- Example: $X = \alpha Y + \beta Y^2$, where $Y \equiv_D U[0, 1]$.



Projection

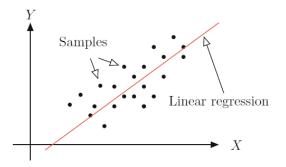
- L[X|Y] is the projection of X onto the subspace $\mathcal{L}(Y)$ of linear functions of Y.
 - Define E(VW) as the inner product of two RVs V and W.
 - V and W are orthogonal if E(VW) = 0.
 - Projection Property: X L[X|Y] is orthogonal to every linear function of Y.



- L[X|Y] is the closest point to X in $\mathcal{L}(Y)$.

Regression

- In stead of knowing the joint distribution, suppose we observe IID samples $(X_i, Y_i), i = 1, ..., K$.
- Our goal is to choose a and b that minimizes $\frac{1}{K}\sum_{i=1}^{K} |X_i a bY_i|^2$.

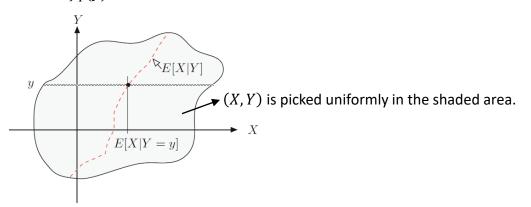


• Theorem:
$$a + bY = E_K(X) + \frac{cov_K(X,Y)}{var_K(Y)}(Y - E_K(Y))$$
, where
 $E_K(X) = \frac{1}{K}\sum_{i=1}^K X_i$
 $E_K(Y) = \frac{1}{K}\sum_{i=1}^K Y_i$
 $cov_K(X,Y) = \frac{1}{K}\sum_{i=1}^K X_iY_i - E_K(X)E_K(Y)$
 $var_K(Y) = \frac{1}{K}\sum_{i=1}^K Y_i^2 - (E_K(Y))^2$

• Theorem: As the number of samples increases the linear regression approaches LLSE estimate.

Minimum Mean Squared Error (MMSE) Estimate

- For now, assume we know the joint distribution of (*X*, *Y*).
- Problem: Find function g such that g(Y) minimizes $E(|X g(Y)|^2)$.
 - The best solution g(Y) is called MMSE of X given Y.
- Theorem: MMSE of X given Y is given by g(Y) = E[X|Y].
- Recall E[X|Y] is an RV, and $E[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}[x|y] dx$, where $f_{X|Y}[x|y] = \frac{f_{X,Y}(x,y)}{f_Y(y)}$.



- Lemma (Orthogonality Property of MMSE):
 - i. For any function $\phi(.)$, $E((X E[X|Y])\phi(Y)) = 0$.
 - ii. Also, if g(Y) is such that $E((X g(Y))\phi(Y)) = 0 \forall \phi(.), g(Y) = E[X|Y].$
- Fact: $\phi(Y)$ is MMSE of X given Y if and only if $E[X \phi(Y)|Y] = 0$.

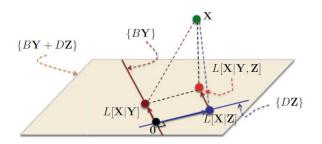
Properties of Conditional Expectation

- Properties:
 - a. Linearity: $E[a_1X_1 + a_2X_2|Y] = a_1E[X_1|Y] + a_2E[X_2|Y]$.
 - b. Factoring: E[h(Y)X|Y] = h(Y)E[X|Y].
 - c. Independence: If X and Y are independent, E[X|Y] = E(X).
 - d. Smoothing: E(E[X|Y]) = E(X).
 - e. Tower: E[E[X|Y, Z]|Y] = E[X|Y].
- Example: Let X, Y be IID U[0, 1]. Find $E[(X + 2Y)^2|Y]$.
- Example: Let X, Y, Z be IID. Find E[X|X + Y + Z].

MMSE for Jointly Gaussian RVs

• Theorem: Let *X*, *Y* be JG RVs. Then,

$$E[X|Y] = L[X|Y] = E(X) + \frac{cov(X,Y)}{var(Y)}(Y - E(Y)).$$



Important Results for LLSE

- Theorem (LLSE Orthogonal Update): Assume that X, Y, Z are zero-mean RVs, and that Y, Z are orthogonal. Then, L[X|Y, Z] = L[X|Y] + L[X|Z].
- Theorem (LLSE General Update): Assume that X, Y, Z are zero-mean RVs. Then, L[X|Y, Z] = L[X|Y] + L[X|Z - L[Z|Y]].
- LLSE Properties:
 - a. $L[a_1X_1 + a_2X_2|Y] = a_1L[X_1|Y] + a_2L[X_2|Y].$
 - $b. \quad L[L[X|Y,Z]|Y] = L[X|Y].$
 - c. If X, Y are uncorrelated, L[X|Y] = E(X).

Scalar Kalman Filter (KF)

- Consider a system with state x_n and output y_n : $x_n = ax_{n-1} + v_n$, |a| < 1, and $y_n = cx_n + w_n$, $n \ge 1$, where $x_0, \{v_n\}_{n=1}^{\infty}, \{w_n\}_{n=1}^{\infty}$ are orthogonal zero-mean RVs, with $E(v_n^2) = \sigma_v^2$, $E(w_n^2) = \sigma_w^2$. Find $\hat{x}_{n|n} \coloneqq L[x_n|y_1, \dots, y_n]$, $n \ge 1$, recursively.
- Examples: Particle Positon, Chemical Reaction, Econometry, ...
- Solution (assuming c = 1): Compute $\hat{x}_{1|1}$ and iterate for $n \ge 2$ using $\hat{x}_{n|n} = a\hat{x}_{n-1|n-1} + k_n(y_n - a\hat{x}_{n-1|n-1})$, where k_n 's can be computed offline. Compute $\sigma_{1|1}^2$ and iterate for $n \ge 2$ using $E((x_n - \hat{x}_{n|n-1})^2) =: \sigma_{n|n-1}^2 = a^2 \sigma_{n-1|n-1}^2 + \sigma_v^2$ $k_n = \frac{\sigma_{n|n-1}^2}{\sigma_{n|n-1}^2 + \sigma_w^2}$ $E((x_n - \hat{x}_{n|n})^2) =: \sigma_{n|n}^2 = \sigma_{n|n-1}^2(1 - k_n)$
- Example: Obtain $\hat{x}_{1|1}$ and $\sigma_{1|1}^2$ for initializing the KF recursions when $x_0 = 0$.

Vector Kalman Filter (KF)

• Consider a system with state X_n and output Y_n :

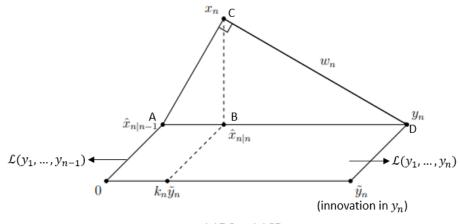
 $X_n = AX_{n-1} + V_n$, and

 $Y_n = CX_n + W_n$, $n \ge 1$, where

 $X_0, \{V_n\}_{n=1}^{\infty}, \{W_n\}_{n=1}^{\infty}$ are orthogonal zero-mean Random Vectors, with Σ_v and Σ_W being the covariance matrices for each V_n and W_n , resp. Find $\hat{X}_{n|n} \coloneqq L[X_n|Y_1, \dots, Y_n], n \ge 1$, recursively.

• Solution:

Compute $\hat{X}_{1|1}$ and iterate for $n \ge 2$ using $\hat{X}_{n|n} = A\hat{X}_{n-1|n-1} + K_n(Y_n - CA\hat{X}_{n-1|n-1})$, where K_n 's can be computed offline. Compute $\Sigma_{1|1}$ and iterate for $n \ge 2$ using $cov(X_n - \hat{X}_{n|n-1}) \coloneqq \Sigma_{n|n-1} = A\Sigma_{n-1|n-1}A' + \Sigma_V$ $K_n = \Sigma_{n|n-1}C'(C\Sigma_{n|n-1}C' + \Sigma_W)^{-1}$ $cov(X_n - \hat{X}_{n|n}) \coloneqq \Sigma_{n|n} = (I - K_nC)\Sigma_{n|n-1}$



 $\Delta ABC \sim \Delta ACD$

