EECS 126: Probability \& Random Processes Fall 2021

Tracking
Shyam Parekh

Topics Covered in Lectures on Tracking

- Tracking Problem (Section 9.1 \& 9.2)
- LLSE (Section 9.3)
- Linear Regression (Section 9.4)
- MMSE (Section 9.6)
- Updating LLSE (Section 10.1)
- Kalman Filter (Kalman Filter Notes*)
* Lecture will be based on the Kalman Filter Notes posted on the course website.

Sections 9.8 and 10.2 can be used as references.

Problem Statement

- Let (X, Y) be a pair of continuous RV s related to a system, and we want to estimate X based on the observed value Y by
- $\hat{X}=g(Y)$ such that expected $\operatorname{cost} \mathrm{C}(\mathrm{g}):=E(c(X, g(Y)))$ is minimized for a given cost function c.
- Squared Error cost: $c(X, \hat{X})=|X-\hat{X}|^{2}$ for $X \in \mathcal{R}$ or $\|X-\hat{X}\|^{2}$ for $X \in \mathcal{R}^{d}$.
- With squared error cost and minimizing $C(g)$ over arbitrary function g, \hat{X} is the Minimum Mean Squared Error (MMSE) Estimate of X given Y.
- With squared error cost and minimizing $C(g)$ where g limited to linear functions of Y (i.e., $\widehat{X}=a+b Y$ for some a and b), \widehat{X} is the Linear Least Squares Error (LLSE) Estimate of X given Y.

- Different formulations:
- Known joint distribution of (X, Y).
- Offline: Observe set of samples $\left(X_{i}, Y_{i}\right), i=1,2, \ldots, K$.
- Online: Observe successive samples $\left(X_{n}, Y_{n}\right)$.
- Examples:
- Estimate location based on GPS signals.
- Estimate speed based on radar signals.
- Estimate state of vehicle based on sensor signals.

Linear Least Squares Error (LLSE) Estimate

- We are looking for $\hat{X}=a+b Y$ that minimizes $E\left(|X-a-b Y|^{2}\right)$ over $\forall a, b \in \mathcal{R}$ assuming we know joint distribution of (X, Y).
- $L[X \mid Y]$ denotes this estimate.
- Theorem: Assuming $\operatorname{var}(Y) \neq 0$,
$L[X \mid Y]=E(X)+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(Y)}(Y-E(Y))$.
- Example: $Y=\alpha X+Z$, where X and Z are zero-mean \& independent RVs.
- Example: $X=\alpha Y+\beta Y^{2}$, where $Y \equiv_{D} U[0,1]$.

Projection

- $L[X \mid Y]$ is the projection of X onto the subspace $\mathcal{L}(Y)$ of linear functions of Y.
- Define $E(V W)$ as the inner product of two RVs V and W.
- $\quad V$ and W are orthogonal if $E(V W)=0$.
- Projection Property: $X-L[X \mid Y]$ is orthogonal to every linear function of Y.

- $\quad L[X \mid Y]$ is the closest point to X in $\mathcal{L}(Y)$.

Regression

- In stead of knowing the joint distribution, suppose we observe IID samples $\left(X_{i}, Y_{i}\right), i=1, \ldots, K$.
- Our goal is to choose a and b that minimizes $\frac{1}{K} \sum_{i=1}^{K}\left|X_{i}-a-b Y_{i}\right|^{2}$.

- Theorem: $a+b Y=E_{K}(X)+\frac{\operatorname{cov}_{K}(X, Y)}{\operatorname{var}_{K}(Y)}\left(Y-E_{K}(Y)\right)$, where

$$
\begin{aligned}
& E_{K}(X)=\frac{1}{K} \sum_{i=1}^{K} X_{i} \\
& E_{K}(Y)=\frac{1}{K} \sum_{i=1}^{K} Y_{i} \\
& \operatorname{cov}_{K}(X, Y)=\frac{1}{K} \sum_{i=1}^{K} X_{i} Y_{i}-E_{K}(X) E_{K}(Y) \\
& \operatorname{var}_{K}(Y)=\frac{1}{K} \sum_{i=1}^{K} Y_{i}^{2}-\left(E_{K}(Y)\right)^{2}
\end{aligned}
$$

- Theorem: As the number of samples increases the linear regression approaches LLSE estimate.

Minimum Mean Squared Error (MMSE) Estimate

- For now, assume we know the joint distribution of (X, Y).
- Problem: Find function g such that $g(Y)$ minimizes $E\left(|X-g(Y)|^{2}\right)$.
- The best solution $g(Y)$ is called MMSE of X given Y.
- Theorem: MMSE of X given Y is given by $g(Y)=E[X \mid Y]$.
- Recall $E[X \mid Y]$ is an RV , and $E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}[\mathrm{x} \mid \mathrm{y}] \mathrm{dx}$, where $f_{X \mid Y}[\mathrm{x} \mid \mathrm{y}]=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$.

- Lemma (Orthogonality Property of MMSE):
i. For any function $\phi(),. E((X-E[X \mid Y]) \phi(Y))=0$.
ii. Also, if $g(Y)$ is such that $E((X-g(Y)) \phi(Y))=0 \forall \phi(),. g(Y)=E[X \mid Y]$.
- Fact: $\phi(Y)$ is MMSE of X given Y if and only if $E[X-\phi(Y) \mid Y]=0$.

Properties of Conditional Expectation

- Properties:
a. Linearity: $E\left[a_{1} X_{1}+a_{2} X_{2} \mid Y\right]=a_{1} E\left[X_{1} \mid Y\right]+a_{2} E\left[X_{2} \mid Y\right]$.
b. Factoring: $E[h(Y) X \mid Y]=h(Y) E[X \mid Y]$.
c. Independence: If X and Y are independent, $E[X \mid Y]=E(X)$.
d. Smoothing: $E(E[X \mid Y])=E(X)$.
e. Tower: $E[E[X \mid Y, Z] \mid Y]=E[X \mid Y]$.
- Example: Let X, Y be IID $U[0,1]$. Find $E\left[(X+2 Y)^{2} \mid \mathrm{Y}\right]$.
- Example: Let X, Y, Z be IID. Find $E[X \mid X+Y+Z]$.

MMSE for Jointly Gaussian RVs

- Theorem: Let X, Y be JG RVs. Then,
$\mathrm{E}[\mathrm{X} \mid \mathrm{Y}]=L[X \mid Y]=E(X)+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(Y)}(Y-E(Y))$.

Important Results for LLSE

- Theorem (LLSE Orthogonal Update): Assume that X, Y, Z are zero-mean RVs, and that Y, Z are orthogonal. Then, $L[X \mid Y, Z]=L[X \mid Y]+L[X \mid Z]$.

- Theorem (LLSE General Update): Assume that X, Y, Z are zero-mean RVs. Then, $L[X \mid Y, Z]=L[X \mid Y]+L[X \mid Z-L[Z \mid Y]]$.
- LLSE Properties:
a. $L\left[a_{1} X_{1}+a_{2} X_{2} \mid Y\right]=a_{1} L\left[X_{1} \mid Y\right]+a_{2} L\left[X_{2} \mid Y\right]$.
b. $L[L[X \mid Y, Z] \mid Y]=L[X \mid Y]$.
c. If X, Y are uncorrelated, $L[X \mid Y]=E(X)$.

Scalar Kalman Filter (KF)

- Consider a system with state x_{n} and output y_{n} :
$x_{n}=a x_{n-1}+v_{n},|a|<1$, and
$y_{n}=c x_{n}+w_{n}, \mathrm{n} \geq 1$, where
$x_{0},\left\{v_{n}\right\}_{n=1}^{\infty},\left\{w_{n}\right\}_{n=1}^{\infty}$ are orthogonal zero-mean RVs,
with $E\left(v_{n}^{2}\right)=\sigma_{v}^{2}, E\left(w_{n}^{2}\right)=\sigma_{w}^{2}$.
Find $\hat{x}_{\mathrm{n} \mid \mathrm{n}}:=L\left[x_{n} \mid y_{1}, \ldots, y_{n}\right], \mathrm{n} \geq 1$, recursively.
- Examples: Particle Positon, Chemical Reaction, Econometry, ...
- Solution (assuming $c=1$):

Compute $\hat{x}_{1 \mid 1}$ and iterate for $n \geq 2$ using
$\hat{x}_{\mathrm{n} \mid \mathrm{n}}=a \hat{x}_{\mathrm{n}-1 \mid \mathrm{n}-1}+k_{n}\left(y_{n}-a \hat{x}_{\mathrm{n}-1 \mid \mathrm{n}-1}\right)$, where k_{n} 's can be computed offline.
Compute $\sigma_{1 \mid 1}^{2}$ and iterate for $n \geq 2$ using
$E\left(\left(x_{n}-\hat{x}_{n \mid n-1}\right)^{2}\right)=: \sigma_{n \mid n-1}^{2}=a^{2} \sigma_{n-1 \mid n-1}^{2}+\sigma_{v}^{2}$
$k_{n}=\frac{\sigma_{n \mid n-1}^{2}}{\sigma_{n \mid n-1}^{2}+\sigma_{w}^{2}}$
$E\left(\left(x_{n}-\hat{x}_{n \mid n}\right)^{2}\right)=: \sigma_{n \mid n}^{2}=\sigma_{n \mid n-1}^{2}\left(1-k_{n}\right)$

- Example: Obtain $\hat{x}_{1 \mid 1}$ and $\sigma_{1 \mid 1}^{2}$ for initializing the KF recursions when $x_{0}=0$.

Vector Kalman Filter (KF)

- Consider a system with state X_{n} and output Y_{n} :
$X_{n}=A X_{n-1}+V_{n}$, and
$Y_{n}=C X_{n}+W_{n}, \mathrm{n} \geq 1$, where
$X_{0},\left\{V_{n}\right\}_{n=1}^{\infty},\left\{W_{n}\right\}_{n=1}^{\infty}$ are orthogonal zero-mean Random Vectors,
with Σ_{v} and Σ_{W} being the covariance matrices for each V_{n} and W_{n}, resp.
Find $\hat{X}_{\mathrm{n} \mid \mathrm{n}}:=L\left[X_{n} \mid Y_{1}, \ldots, Y_{n}\right], \mathrm{n} \geq 1$, recursively.
- Solution:

Compute $\hat{X}_{1 \mid 1}$ and iterate for $n \geq 2$ using
$\hat{X}_{\mathrm{n} \mid \mathrm{n}}=A \widehat{X}_{\mathrm{n}-1 \mid \mathrm{n}-1}+K_{n}\left(Y_{n}-C A \hat{X}_{\mathrm{n}-1 \mathrm{n}-1}\right)$, where K_{n} 's can be computed offline.
Compute $\Sigma_{1 \mid 1}$ and iterate for $n \geq 2$ using
$\operatorname{cov}\left(X_{n}-\hat{X}_{n \mid n-1}\right):=\Sigma_{n \mid n-1}=A \Sigma_{n-1 \mid n-1} A^{\prime}+\Sigma_{V}$
$K_{n}=\Sigma_{n \mid n-1} C^{\prime}\left(C \Sigma_{n \mid n-1} C^{\prime}+\Sigma_{W}\right)^{-1}$
$\operatorname{cov}\left(X_{n}-\hat{X}_{n \mid n}\right):=\Sigma_{n \mid n}=\left(I-K_{n} C\right) \Sigma_{n \mid n-1}$

