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Topics Covered in Lectures on Tracking

* Tracking Problem (Section 9.1 & 9.2)
* LLSE (Section 9.3)

* Linear Regression (Section 9.4)

* MMSE (Section 9.6)

* Updating LLSE (Section 10.1)

* Kalman Filter (Kalman Filter Notes*)

* Lecture will be based on the Kalman Filter Notes posted on the course website.
Sections 9.8 and 10.2 can be used as references.



Problem Statement

* Let (X,Y) be a pair of continuous RVs related to a system, and we want to
estimate X based on the observed value Y by

- X = g(Y) such that expected cost C(g) = E(c(X, g(Y))) is minimized for a given cost
function c.

— Squared Error cost: c(X,X) = |X — X|?forX e Ror || X — X |I? for X € R

— With squared error cost and minimizing C(g) over arbitrary function g, X is the
Minimum Mean Squared Error (MMSE) Estimate of X given Y.

— With squared error cost and minimizing C(g) where g limited to linear functions of Y
(i.e., X = a + bY for some a and b), X is the Linear Least Squares Error (LLSE) Estimate

of X given'Y.
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* Different formulations:
— Known joint distribution of (X,Y).
— Offline: Observe set of samples (X;,Y;),i = 1,2, ..., K.
— Online: Observe successive samples (X;,, ¥y,).

* Examples:
— Estimate location based on GPS signals.
— Estimate speed based on radar signals.
— Estimate state of vehicle based on sensor signals.



Linear Least Squares Error (LLSE) Estimate

We are looking for X = a + bY that minimizes E(|X —a — bY|?*) overVa,b € R
assuming we know joint distribution of (X,Y).

- L[X]|Y] denotes this estimate.
Theorem: Assuming var(Y) # 0,

LIX|Y] = E(X) + % Y — E(Y)).

Example: Y = aX + Z, where X and Z are zero-mean & independent RVs.

Example: X = aY + BY?, where Y =, U[0, 1].
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Projection

» L[X|Y]is the projection of X onto the subspace L(Y) of linear functions of Y.
— Define E(VW) as the inner product of two RVs V and W/.
- Vand W are orthogonal if E(VW) = 0.
— Projection Property: X — L[X|Y] is orthogonal to every linear function of Y.

o LY)={ct+dY|e,d e R}

- L[X]|Y] is the closest pointto X in L(Y).



Regression

* In stead of knowing the joint distribution, suppose we observe IID samples
X;,¥),i=1,..,K.

: I
* Our goal is to choose a and b that minimizes P K 1X;i —a— bY;|?.

covg(X,Y)
varg(Y)

* Theorem:a + bY = Ex(X) + (Y — Ex(Y)), where

Ex(X) = %Z{(:lXi

Ex(Y) = % {{=1Yi

covg(X,Y) = = XK, X;Y; — Ex (X)Ex ()
var(Y) = + XK, V2 — (Eg(Y))?

* Theorem: As the number of samples increases the linear regression approaches
LLSE estimate.



Minimum Mean Squared Error (MMSE) Estimate

For now, assume we know the joint distribution of (X,Y).

Problem: Find function g such that g(Y) minimizes E(|X — g(¥)|?).
— The best solution g(Y) is called MMSE of X given Y.

Theorem: MMSE of X given Y is given by g(Y) = E[X]Y].
Recall E[X|Y]isan RV, and E[X|Y = y] = ffooo xfxy [Xlyldx, where
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Lemma (Orthogonality Property of MMSE):
i.  Forany function ¢(.), E((X — E[XIY])¢(Y)) =0.

ii. Also,if g(Y)issuchthatE ((X - g(Y))d)(Y)) =0V ¢(.) gY) = E[X|Y].

Fact: ¢(Y) is MMSE of X given Y if and only if E[X — ¢(Y)|Y] = 0.
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Properties of Conditional Expectation

Properties:

a.

b
C.
d.
e

Linearity: E[a,; X; + a,X5|Y] = a, E[X1|Y] + a,E[X,]|Y].
Factoring: E[h(Y)X|Y] = h(Y)E[X]|Y].

Independence: If X and Y are independent, E[X|Y] = E(X).
Smoothing: E(E[X|Y]) = E(X).

Tower: E[E[X|Y, Z]|Y] = E[X]|Y].

Example: Let X,Y be IID U[0, 1]. Find E[(X + 2Y)?|Y].
Example: Let X,Y,Z be IID. Find E[X|X + Y + Z].



MMSE for Jointly Gaussian RVs

* Theorem: Let X,Y be JG RVs. Then,

cov(X,Y)

EIXIY] = LIX|Y] = EQX) + 200

(Y = E(Y)).
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Important Results for LLSE

Theorem (LLSE Orthogonal Update): Assume that X, Y, Z are zero-mean RVs,
and that Y, Z are orthogonal. Then, L[X|Y, Z] = L[X|Y] + L[X|Z].

Theorem (LLSE General Update): Assume that X, Y, Z are zero-mean RVs.
Then, L[X|Y,Z] = LIX|Y] + L[X|Z — L[Z|Y]].

LLSE Properties:
a. Lla; X7 + a,X,|Y] = a4 L[X1|Y] + a,L[X,|Y].
b. LIL[X|Y,Z]|Y] = L[X|Y].
c. If X,Y are uncorrelated, L[X|Y] = E(X).



Scalar Kalman Filter (KF)

* Consider a system with state x,, and output y,,:
Xp = AXp_q1 + vy, lal < 1,and
Yn = CXp + Wy, n =1, where
X0, {Vn}n=1,{Wn}n=1 are orthogonal zero-mean RVs,
with E(v2) = 62, E(W2) = 02.
Find £, == L[xp|y1, ..., ynl,n = 1, recursively.
* Examples: Particle Positon, Chemical Reaction, Econometry, ...
* Solution (assuming ¢ = 1):
Compute X, |, and iterate for n = 2 using
Xoin = X, 4101 Thn(Yn — aX, 1),1), Where ky’s can be computed offline.
Compute 012|1 and iterate forn = 2 using
E((xn — fn|n-1)2) = 0-7%|n—1 = azar%—1|n—1 + 0y

2
k _ Onjn-1
n - _2 2
O'nln_1+O'W

E((xn — 5C\n|n)2) = O-r%|n - O-r%|n—1(1 — kn)

* Example: Obtain X, ; and 012|1 for initializing the KF recursions when xy = 0.



Vector Kalman Filter (KF)

Consider a system with state X,, and output Y,;:

Xn=A4X,,_1 +V,, and

Y, =CX,, + W,,n =1, where

Xo) {VnIm=1, {W;, }5=, are orthogonal zero-mean Random Vectors,

with X, and Xy, being the covariance matrices for each V,, and W,,, resp.
Find ann = L[X,|Y1, ..., Y,],n = 1, recursively.

Solution:

Compute X1|1 and iterate forn = 2 using

Xoin= AKX, 1101 TKn (Y — CAX 1 ),.1), Where K,;’s can be computed offline.
Compute Z;|; and iterate for n = 2 using

cov(Xp — Xyjn1) = Zpjno1 = AZp_qjn-14’ + Iy

Ky = Zpjn_1C'(CEnjn_1C’ + Zy) ™"

cov(Xy — X, ) = Znm = (I = KO Zpnoy
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