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• Digital Link (Section 7.1)

• Detection and Bayes’ Rule (Section 7.2)

• Huffman Codes (Section 7.3)

• Capacity of BSC (Section 15.7)

• Gaussian Channel (Section 7.4 excluding Section 7.4.1)

• Hypothesis Testing (Section 7.6)

• Proof of Neyman-Pearson Theorem (Section 8.2)

• Jointly Gaussian Random Variables (Sections 8.3)

Topics Covered in Lectures on Digital Link



• Transfer information reliably (i.e., meeting performance requirements) using 
minimum resources (computation, bandwidth, storage, energy, …)

• Physical medium: phone line, cable, fiber, wireless (cellular or Wi-Fi), …

Components



• Theorem: Let 𝜋𝑖 = 𝑃[𝐶𝑖|𝑆]. Then, 𝜋𝑖 =
𝑝𝑖𝑞𝑖

 𝑗=1
𝑁 𝑝𝑗𝑞𝑗

.

• Maximum A Posteriori estimate: 𝑀𝐴𝑃 = arg𝑚𝑎𝑥𝑖 𝑃 𝐶𝑖 𝑆] = arg𝑚𝑎𝑥𝑖 𝑝𝑖𝑞𝑖.

• Maximum Likelihood Estimate: 𝑀𝐿𝐸 = arg𝑚𝑎𝑥𝑖 𝑃 𝑆 𝐶𝑖] = arg𝑚𝑎𝑥𝑖 𝑞𝑖.

• Example: Ice Cream & Sunburn.

• General Definition: Let 𝑋 & 𝑌 be discrete RVs.

– 𝑀𝐴𝑃 𝑋 𝑌 = 𝑦]= arg𝑚𝑎𝑥𝑥 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 .

– 𝑀𝐿𝐸 𝑋 𝑌 = 𝑦] = arg𝑚𝑎𝑥𝑥 𝑃 𝑌 = 𝑦 𝑋 = 𝑥].

Bayes’ Rule, MAP & MLE

Priors: 𝑝𝑖 = 𝑃(𝐶𝑖)

Conditionals: 𝑞𝑖 = 𝑃[𝑆|𝐶𝑖]



• Theorem: For BSC,

– 𝑀𝐴𝑃 𝑋 𝑌 = 0] = 1 𝛼 > 1 − 𝑝 ,𝑀𝐴𝑃 𝑋 𝑌 = 1] = 1{𝛼 > 𝑝}.

– 𝑀𝐿𝐸 𝑋 𝑌] = 𝑌, if 𝑝 < 0.5.

Binary Symmetric Channel (BSC)

X Y

𝛼



• Additive Gaussian Noise Channel: 𝑌 = 𝑋 + 𝑍, where 𝑍 ≡𝐷 𝒩(0, 𝜎2) is 
independent of 𝑋.

– Suppose 𝑋 ∈ {0, 1}.

– Let 𝑓0 = 𝑓𝑌|{𝑋=0} and 𝑓1 = 𝑓𝑌|{𝑋=1}.

• Theorem: For Gaussian channel,

– 𝑀𝐴𝑃 𝑋 𝑌 = 𝑦] = 1 𝑦 ≥
1

2
+ 𝜎2𝑙𝑜𝑔𝑒

𝑝0

𝑝1
.

– 𝑀𝐿𝐸 𝑋 𝑌 = 𝑦] = 1{𝑦 ≥ 0.5}.

– Corollary: For MLE, probability of error 𝑝 = 𝑃 𝒩 0, 1 >
0.5

𝜎
is same as that for a BSC.

Gaussian Channel



• Consider coding of 4 symbols A, B, C, D.

– One option: Assign 00, 01, 10, 11 to A, B, C, D, respectively.

– We can decode a received string (without any errors) unambiguously: 0100110001 
→ BADAB

– 2 bits per symbol.

• Suppose, we know probability of occurrence of each symbol: 0.55, 0.3, 0.1, 
0.05, respectively.

– Let’s assign 0, 10, 110, 111 to A, B, C, D, respectively.

 Observe we are assigning shorter codes to more frequent symbols.

– Here also we can unambiguously decode in one pass since the codes are prefix-
free: 110100111 → CBAD.

– Average # of bits per symbol = 1.6 (20% saving in transmission).

– These are called Huffman Codes.

• Construction:

• Theorem: The Huffman Code has the smallest average number of bits per 
symbol among all prefix-free codes.

Huffman Codes



• Theorem: Capacity of BSC ≔ 𝐶(𝑝) = 1 − 𝐻(𝑝),

where entropy 𝐻 𝑝 = −𝑝𝑙𝑜𝑔𝑝 − 1 − 𝑝 𝑙𝑜𝑔(1 − 𝑝).

Capacity of Binary Symmetric Channel (BSC)

X Y



• Formulation: 𝑋 ∈ {0, 1} and 𝑃 𝑌 𝑋] is known. Let  𝑋 be the estimate of 𝑋.

Maximize Probability of Correct Detection (PCD) ≔ 𝑃  𝑋 = 1 𝑋 = 1]

Subject to Probability of False Alarm (PFA) ≔ 𝑃  𝑋 = 1 𝑋 = 0] ≤ β.

• Receiver Operating Characteristic (ROC): PCD for the solution of the above 
problem as a function 𝑅(𝛽).

• Solution is provided by the following theorem.

• Neyman-Pearson Theorem:

 𝑋 =  

1, 𝑖𝑓 𝐿 𝑌 > 𝜆

1 𝑤. 𝑝. 𝛾, 𝑖𝑓 𝐿 𝑌 = 𝜆

0, 𝑖𝑓 𝐿 𝑌 < 𝜆

where the likelihood ratio 𝐿 𝑦 =
𝑓𝑌|𝑋 𝑦 1]

𝑓𝑌|𝑋 𝑦 0]
and 𝜆, 𝛾 are chosen s. t. 

𝑃  𝑋 = 1 𝑋 = 0] = 𝛽.

Hypothesis Testing



• Gaussian Channel: 𝑌 = 𝑋 + 𝑍, where 𝑍 ≡𝐷 𝒩(0, 𝜎2) is independent of 𝑋. 

– Receiver wants to guess 𝑋 from the received signal 𝑌 with 𝑃𝐹𝐴 ≤ 𝛽.

• Solution of the hypothesis problem:

• ROC:

Hypothesis Testing – Example (1)

𝑦0



• Mean of Exponential RVs: A machine produces lightbulbs with IID 𝐸𝑥𝑝(𝜆𝑥)
lifespans, where 𝑥 ∈ {0, 1}, 𝜆0 < 𝜆1, and 𝑥 = 1 indicates a defective 
machine.

– By observing the lifespans of 𝑛 lightbulb, we want to detect if the 
machine is defective with 𝑃𝐹𝐴 ≤ 𝛽.

Hypothesis Testing – Example (2)



• Bias of a coin: A coin is 𝐵(𝑝𝑥), where 𝑥 ∈ 0, 1 with 𝑝1 > 𝑝0 = 0.5

– By observing 𝑛 coin flips, we want to detect if it’s a biased coin with 
𝑃𝐹𝐴 ≤ 𝛽.

Hypothesis Testing – Example (3)



• Discrete observations: 𝑋 ∈ 0, 1 and 𝑌 ∈ {𝐴, 𝐵, 𝐶}.

– Given 𝑃 𝑌 𝑋], guess 𝑋.

– 𝑃 𝑌 𝑋]:

– 𝐿 𝑌 :

• Solution:

Hypothesis Testing – Example (4)

Y=A Y=B Y=C

X=0 0.2 0.5 0.3

X=1 0.2 0.2 0.6

1.0 0.4 2.0

• ROC:

𝜆 = 0.4 ⇒ 𝑃𝐶𝐷 = 0.8 + 0.2𝛾, 𝑃𝐹𝐴 = 0.5 + 0.5𝛾



• Suppose a RV 𝑋 has PDF 𝑓𝑋(x) and 𝑌 = 𝑎𝑋 + 𝑏. Then,

𝑓𝑌 𝑦 =
1

𝑎
𝑓𝑋(x) where 𝑎𝑥 + 𝑏 = 𝑦.

• Suppose a random vector 𝑿 has JPDF 𝑓𝑿(𝒙), and 𝒀 = 𝐴𝑿 + 𝒃 where 𝐴 is a 
nonsingular matrix. Then,

𝑓𝒀 𝒚 =
1

𝐴
𝑓𝑿(𝐱) where 𝐴𝒙 + 𝒃 = 𝒚, and 𝐴 is the absolute value of the 

determinant of 𝐴. 

• Suppose 𝒀 = 𝑔 𝑿 where 𝑿 has density 𝑓𝑿(𝒙). Then,

𝑓𝒀 𝒚 =  𝑖
1

|𝐽 𝒙𝒊 |
𝑓𝑿(𝒙𝒊) where the sum is over all 𝒙𝒊 such that 𝑔 𝒙𝒊 = 𝒚 and 

|𝐽 𝒙𝒊 | is the absolute value of Jacobian evaluated at 𝒙𝒊.

– Recall 𝐽𝑖,𝑗 𝐱 =
𝜕

𝜕𝑥𝑗
𝑔𝑖(𝒙).

Density of a Function of RVs

Recall from Basic Probability, Section B.7



• Definition: 𝑌1, … , 𝑌𝑛 are JG RVs if 𝒀 ≔
𝑌1..
𝑌𝑛

= 𝐴𝒁 + 𝜇𝒀, where 𝑍𝑖’s in 𝒁 ≔
𝑍1..
𝑍𝑘

are IID 𝒩(0, 1), and 𝐴 and 𝜇𝒀 are 𝑛 × 𝑘 and 𝑛 × 1 constant matrices, 
respectively.

– Mean and covariance of 𝒀 are 𝜇𝒀 and Σ𝒀 ≔ 𝐴A’.

– We write 𝑌 ≡𝐷 𝒩(𝜇𝒀, Σ𝒀).

• Theorem: Assuming Σ𝒀 is invertible,                                                                   

𝑓𝒀 𝒚 =
1

|Σ𝒀|(2𝜋)𝑛/2
𝑒𝑥𝑝{−

1

2
(𝒚 − 𝜇𝒀)′Σ𝒀

−1 𝒚 − 𝜇𝒀 }.

• Example: IID 𝒩(0, 𝜎𝑖
2) RVs

• Fact: Level curves for the JG PDF are elliptical.

• Example: Marginals are Gaussian, but not JG.

• Theorem: JG RVs are independent if and only if they are uncorrelated.

• Theorem: If 𝑽 and 𝑾 are JG, their linear combinations 𝐴𝑽 + 𝒂 and 𝐵𝑾 + 𝒃 are 
also JG.

• Example: Given IID 𝒩 0, 1 𝑋, 𝑌, 𝑋 + 𝑌 and 𝑋 − 𝑌 are JG.

Jointly Gaussian (JG) RVs








