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Topics Covered in Lectures on Digital Link

Digital Link (Section 7.1)

Detection and Bayes’ Rule (Section 7.2)

Huffman Codes (Section 7.3)

Capacity of BSC (Section 15.7)

Gaussian Channel (Section 7.4 excluding Section 7.4.1)
Hypothesis Testing (Section 7.6)

Proof of Neyman-Pearson Theorem (Section 8.2)

Jointly Gaussian Random Variables (Sections 8.3)



Components

Transfer information reliably (i.e., meeting performance requirements) using
minimum resources (computation, bandwidth, storage, energy, ...)

Physical medium: phone line, cable, fiber, wireless (cellular or Wi-Fi), ...
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Bayes’ Rule, MAP & MLE

possible circumstances

Symptom
Priors: p; = P(C;)

Conditionals: g; = P[S|C;]

qN

conditional
priors C"\-‘ probabilities

Theorem: Let r; = P[C;|S]. Then, m; = —Zzypli;l,ijqj-
]=

Maximum A Posteriori estimate: MAP = argmax; P[C; | S] = argmax; p; q;.
Maximum Likelihood Estimate: MLE = arg max; P[S | C;] = argmax; q;.
Example: Ice Cream & Sunburn.

General Definition: Let X & Y be discrete RVs.
- MAP[X|Y =y]=argmax, P(X =x,Y =y).
- MLE[X|Y =y]=argmax, P[Y =y |X = x].



Binary Symmetric Channel (BSC)
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* Theorem: For BSC,
- MAPX|Y=0]=1{a>1—-p)},MAP[X|Y =1] = 1{a > p}.
- MLE[X|Y]=Y,ifp <0.5.
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Gaussian Channel

« Additive Gaussian Noise Channel: Y = X + Z, where Z =, NV (0, 0?)is
independent of X.

— Suppose X € {0, 1}.
- Let fo = frjx=0y @and f1 = fy|x=1}-
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* Theorem: For Gaussian channel,
— ] = 1, ,2 Po
- MAPIX|Y =y] =1{y =3+ o?log. (pl)}.
- MLE[X|Y =7v]=1{y = 0.5}
— Corollary: For MLE, probability of error p = P (N(O, 1) > %) is same as that for a BSC.




Huffman Codes

Consider coding of 4 symbols A, B, C, D.
— One option: Assign 00, 01, 10, 11 to A, B, C, D, respectively.

— We can decode a received string (without any errors) unambiguously: 0100110001
— BADAB

— 2 bits per symbol.

Suppose, we know probability of occurrence of each symbol: 0.55, 0.3, 0.1,
0.05, respectively.

— Let’sassign 0, 10,110, 111 to A, B, C, D, respectively.
= Observe we are assigning shorter codes to more frequent symbols.

— Here also we can unambiguously decode in one pass since the codes are prefix-
free: 110100111 — CBAD.

— Average # of bits per symbol = 1.6 (20% saving in transmission).

— These are called Huffman Codes.

Construction:

A B C D
0.55 0.3 0.1 0.05
0 10 110 111

Theorem: The Huffman Code has the smallest average number of bits per
symbol among all prefix-free codes.



Capacity of Binary Symmetric Channel (BSC)
l—p
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* Theorem: Capacity of BSC:= C(p) = 1 — H(p),
where entropy H(p) = —plogp — (1 — p)log(1 — p).

1

0.8
v C(p)
06F \

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1




Hypothesis Testing

 Formulation: X € {0,1} and P[Y | X] is known. Let X be the estimate of X.
Maximize Probability of Correct Detection (PCD) := P[)? =1 | X =1]
Subject to Probability of False Alarm (PFA) := P[X = 1| X = 0] < B.

* Receiver Operating Characteristic (ROC): PCD for the solution of the above
problem as a function R(f).

A R(B) = max{PCDIPFA < j

Y
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* Solution is provided by the following theorem.

* Neyman-Pearson Theorem:

1,if L(Y) > A
X=S{1w.py,if LY)=2
0,if L(Y) < A
where the likelihood ratio L(y) = Frxly 111 and 4,y are chosens. t.
frixly10]

P[X=1|X=0]=8.



Hypothesis Testing — Example (1)

* Gaussian Channel: Y = X + Z, where Z =, V' (0, ¢?) is independent of X.
— Receiver wants to guess X from the received signal Y with PFA < .

* Solution of the hypothesis problem:

A 1
fyix [V10] : fyix [vI1]
i PFA=p
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Hypothesis Testing — Example (2)

* Mean of Exponential RVs: A machine produces lightbulbs with IID Exp(4,)
lifespans, where x € {0,1}, 4, < A4, and x = 1 indicates a defective
machine.

— By observing the lifespans of n lightbulb, we want to detect if the
machine is defective with PFA < .



Hypothesis Testing — Example (3)

* Bias of a coin: A coin is B(p,), where x € {0, 1} with p; > p, = 0.5

— By observing n coin flips, we want to detect if it’s a biased coin with
PFA < p.



Hypothesis Testing — Example (4)

Discrete observations: X € {0,1}and Y € {4,B,C}.

— Given P[Y | X], guess X.

- P[Y | X]:
Y=A Y=B Y=C
X=0 0.2 0.5 0.3
X=1 0.2 0.2 0.6
- L(Y):
1.0 0.4 2.0
Solution: ROC:

Y B A C . s !
Ply|Jx=1 02 02 0.6 |
PlYIX=0 05 02 03 e =" R(5)

L(Y) 04 1 2 el . | i
A=21=PCD=0,PFA=0 | |
A=2= PCD = 0.6y, PFA=0.3y L |
A=14= PCD =0.6,PFA=03 L L 5
A=1= PCD =0.6+0.2y,PFA =0.3+0.2y 0 i : —

0 0.3 05 1

A= 0.4= PCD = 0.8+ 0.2y, PFA = 0.5 + 0.5y




Recall from Basic Probability, Section B.7

Density of a Function of RVs

Suppose a RV X has PDF fy(x)and Y = aX + b. Then,

fr(y) = ﬁfx(x) where ax + b = y.

Suppose a random vector X has JPDF fy(x),and Y = AX + b where A is a
nonsingular matrix. Then,

fry) = i fX(X) where Ax + b = y, and |A]| is the absolute value of the
determinant of A.

Suppose Y = g(X) where X has density fx(x). Then,

fyr(y) = Zl fX(xl) where the sum is over all x; such that g(x;) = y and
|J(x;)] is the absolute value of Jacobian evaluated at x;.

- Recall]l-,j(x) = a—xjgi(x).



Jointly Gaussian (JG) RVs

Y
Yo
are lIDNV(0,1),and A and uy are n X k and n X 1 constant matrices,
respectively.

A

Zy

Definition: Y}, ..., Y,, are JGRVs if Y = = AZ + uy, where Z;’sin Z =

— Mean and covariance of Y are uy and Xy = AA’
— We write Y =p N (uy, Zy).

Theorem: Assuming Xy is invertible,

fr ) == —mexpl=3 (v = i) 57 (y — )}

Example: IID V' (0, 57) RVs

Fact: Level curves for the JG PDF are elliptical.

Example: Marginals are Gaussian, but not JG.

Theorem: JG RVs are independent if and only if they are uncorrelated.

Theorem: If V and W are JG, their linear combinations AV + a and BW + b are
also JG.

Example: Given IDN(0,1) X,Y, X + Y and X — Y are JG.












