EECS 126: Probability & Random Processes Fall 2021

Digital Link

Shyam Parekh

Topics Covered in Lectures on Digital Link

- Digital Link (Section 7.1)
- Detection and Bayes' Rule (Section 7.2)
- Huffman Codes (Section 7.3)
- Capacity of BSC (Section 15.7)
- Gaussian Channel (Section 7.4 excluding Section 7.4.1)
- Hypothesis Testing (Section 7.6)
- Proof of Neyman-Pearson Theorem (Section 8.2)
- Jointly Gaussian Random Variables (Sections 8.3)

Components

- Transfer information reliably (i.e., meeting performance requirements) using minimum resources (computation, bandwidth, storage, energy, ...)
- Physical medium: phone line, cable, fiber, wireless (cellular or Wi-Fi), ...

Bayes' Rule, MAP & MLE

possible circumstances

Priors: $p_i = P(C_i)$

Conditionals: $q_i = P[S|C_i]$

- Theorem: Let $\pi_i = P[C_i|S]$. Then, $\pi_i = \frac{p_i q_i}{\sum_{i=1}^N p_i q_i}$.
- Maximum A Posteriori estimate: $MAP = \arg \max_i P[C_i \mid S] = \arg \max_i p_i q_i$.
- Maximum Likelihood Estimate: $MLE = \arg \max_i P[S \mid C_i] = \arg \max_i q_i$.
- Example: Ice Cream & Sunburn.
- General Definition: Let X & Y be discrete RVs.
 - $MAP[X \mid Y = y] = arg max_x P(X = x, Y = y).$
 - $MLE[X \mid Y = y] = arg max_x P[Y = y \mid X = x].$

Binary Symmetric Channel (BSC)

- Theorem: For BSC,
 - $\quad MAP[X \mid Y = 0] = 1\{\alpha > (1-p)\}, MAP[X \mid Y = 1] = 1\{\alpha > p\}.$
 - MLE[X | Y] = Y, if p < 0.5.

Gaussian Channel

- Additive Gaussian Noise Channel: Y = X + Z, where $Z \equiv_D \mathcal{N}(0, \sigma^2)$ is independent of X.
 - Suppose X ∈ {0, 1}.
 - $\quad \text{Let } f_0 = f_{Y | \{X=0\}} \text{ and } f_1 = f_{Y | \{X=1\}}.$

- Theorem: For Gaussian channel,
 - $MAP[X \mid Y = y] = 1\left\{y \ge \frac{1}{2} + \sigma^2 log_e\left(\frac{p_0}{p_1}\right)\right\}.$
 - $MLE[X | Y = y] = 1\{y \ge 0.5\}.$
 - Corollary: For MLE, probability of error $p = P\left(\mathcal{N}(0,1) > \frac{0.5}{\sigma}\right)$ is same as that for a BSC.

Huffman Codes

- Consider coding of 4 symbols A, B, C, D.
 - One option: Assign 00, 01, 10, 11 to A, B, C, D, respectively.
 - We can decode a received string (without any errors) unambiguously: 0100110001
 → BADAB
 - 2 bits per symbol.
- Suppose, we know probability of occurrence of each symbol: 0.55, 0.3, 0.1, 0.05, respectively.
 - Let's assign 0, 10, 110, 111 to A, B, C, D, respectively.
 - Observe we are assigning shorter codes to more frequent symbols.
 - Here also we can unambiguously decode in one pass since the codes are prefixfree: 110100111 → CBAD.
 - Average # of bits per symbol = 1.6 (20% saving in transmission).
 - These are called Huffman Codes.
- Construction:

 Theorem: The Huffman Code has the smallest average number of bits per symbol among all prefix-free codes.

Capacity of Binary Symmetric Channel (BSC)

• Theorem: Capacity of BSC := C(p) = 1 - H(p), where entropy H(p) = -plogp - (1-p)log(1-p).

Hypothesis Testing

- Formulation: $X \in \{0,1\}$ and $P[Y \mid X]$ is known. Let \hat{X} be the estimate of X. Maximize Probability of Correct Detection (PCD) := $P[\hat{X} = 1 \mid X = 1]$ Subject to Probability of False Alarm (PFA) := $P[\hat{X} = 1 \mid X = 0] \leq \beta$.
- Receiver Operating Characteristic (ROC): PCD for the solution of the above problem as a function $R(\beta)$.

- Solution is provided by the following theorem.
- Neyman-Pearson Theorem:

$$\hat{X} = \begin{cases} 1, & \text{if } L(Y) > \lambda \\ 1 & \text{w. p. } \gamma, & \text{if } L(Y) = \lambda \\ 0, & \text{if } L(Y) < \lambda \end{cases}$$

where the likelihood ratio $L(y) = \frac{f_{Y|X}[y \mid 1]}{f_{Y|X}[y \mid 0]}$ and λ , γ are chosen s. t. $P[\hat{X} = 1 \mid X = 0] = \beta$.

Hypothesis Testing – Example (1)

- Gaussian Channel: Y = X + Z, where $Z \equiv_D \mathcal{N}(0, \sigma^2)$ is independent of X.
 - Receiver wants to guess X from the received signal Y with $PFA \leq \beta$.
- Solution of the hypothesis problem:

• ROC:

Hypothesis Testing – Example (2)

- Mean of Exponential RVs: A machine produces lightbulbs with IID $Exp(\lambda_x)$ lifespans, where $x \in \{0,1\}$, $\lambda_0 < \lambda_1$, and x=1 indicates a defective machine.
 - By observing the lifespans of n lightbulb, we want to detect if the machine is defective with $PFA \leq \beta$.

Hypothesis Testing – Example (3)

- Bias of a coin: A coin is $B(p_x)$, where $x \in \{0,1\}$ with $p_1 > p_0 = 0.5$
 - By observing n coin flips, we want to detect if it's a biased coin with $PFA \leq \beta$.

Hypothesis Testing – Example (4)

- Discrete observations: $X \in \{0, 1\}$ and $Y \in \{A, B, C\}$.
 - Given $P[Y \mid X]$, guess X.
 - $P[Y \mid X]$:

	Y=A	Y=B	Y=C
X=0	0.2	0.5	0.3
X=1	0.2	0.2	0.6

- L(Y):

|--|

• Solution:

$$\lambda=2.1\Rightarrow PCD=0, PFA=0$$

$$\lambda=2\Rightarrow PCD=0.6\gamma, PFA=0.3\gamma$$

$$\lambda=1.4 \Rightarrow PCD=0.6, PFA=0.3$$

$$\lambda = 1 \Rightarrow PCD = 0.6 + 0.2\gamma, PFA = 0.3 + 0.2\gamma$$

$$\lambda = 0.4 \Rightarrow PCD = 0.8 + 0.2\gamma, PFA = 0.5 + 0.5\gamma$$

• ROC:

1-	
0.8 $R(\beta)$	
0.6	
	E
0 03 05	1

Recall from Basic Probability, Section B.7

Density of a Function of RVs

- Suppose a RV X has PDF $f_X(x)$ and Y = aX + b. Then,
 - $f_Y(y) = \frac{1}{|a|} f_X(x)$ where ax + b = y.
- Suppose a random vector \boldsymbol{X} has JPDF $f_{\boldsymbol{X}}(\boldsymbol{x})$, and $\boldsymbol{Y} = A\boldsymbol{X} + \boldsymbol{b}$ where A is a nonsingular matrix. Then,
 - $f_Y(y) = \frac{1}{|A|} f_X(\mathbf{x})$ where Ax + b = y, and |A| is the absolute value of the determinant of A.
- Suppose Y = g(X) where X has density $f_X(x)$. Then,
 - $f_Y(y) = \sum_i \frac{1}{|J(x_i)|} f_X(x_i)$ where the sum is over all x_i such that $g(x_i) = y$ and $|J(x_i)|$ is the absolute value of Jacobian evaluated at x_i .
 - Recall $J_{i,j}(\mathbf{x}) = \frac{\partial}{\partial x_i} g_i(\mathbf{x}).$

Jointly Gaussian (JG) RVs

- **Definition:** Y_1, \ldots, Y_n are JG RVs if $\mathbf{Y} \coloneqq \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = A\mathbf{Z} + \mu_{\mathbf{Y}}$, where Z_i 's in $\mathbf{Z} \coloneqq \begin{bmatrix} Z_1 \\ \vdots \\ Z_k \end{bmatrix}$ are IID $\mathcal{N}(0,1)$, and A and $\mu_{\mathbf{Y}}$ are $n \times k$ and $n \times 1$ constant matrices, respectively.
 - Mean and covariance of **Y** are $\mu_{\mathbf{Y}}$ and $\Sigma_{\mathbf{Y}} \coloneqq AA'$.
 - We write $Y \equiv_D \mathcal{N}(\mu_Y, \Sigma_Y)$.
- Theorem: Assuming Σ_Y is invertible, $f_Y(y) = \frac{1}{\sqrt{|\Sigma_Y|}(2\pi)^{n/2}} exp\{-\frac{1}{2}(y-\mu_Y)'\Sigma_Y^{-1}(y-\mu_Y)\}.$
- **Example:** IID $\mathcal{N}(0, \sigma_i^2)$ RVs
- Fact: Level curves for the JG PDF are elliptical.
- Example: Marginals are Gaussian, but not JG.
- Theorem: JG RVs are independent if and only if they are uncorrelated.
- Theorem: If V and W are JG, their linear combinations AV + a and BW + b are also JG.
- **Example:** Given IID $\mathcal{N}(0,1)$ X,Y,X+Y and X-Y are JG.