EECS 126: Probability & Random Processes Fall 2021

Little's Law + Jackson Networks

Shyam Parekh

Fundamental Result: Little's Law

 \rightarrow Average occupancy = (average delay)x(average arrival rate)

Jackson Networks

- Definition:
 - Network of J ./M/1 queues,
 - External arrivals occur according to independent Poisson processes with rate γ_i into queue i,
 - Service time at queue i is according to independent exponential distribution with rate μ_i , and
 - When a customer leaves queue i, independent of the past, he joins queue j with probability r(i,j) and leaves the network with probability $1 \sum_{j=1}^{J} r(i,j)$.

Jackson Networks (2)

- We assume that routing is such that every customer eventually leaves the network.
- Due to flow conservation, total arrival rate into queue i is given by

$$\lambda_i = \gamma_i + \sum_{j=1}^J \lambda_j r(j, i)$$
, for i = 1, 2, ... J.

- For $t \ge 0$, we define $X_t = (X_{1,t}, \dots, X_{J,t})$, where $X_{i,t}$ denotes total # of customers at node i.
 - X_t is a multidimensional CTMC.

Jackson Networks (3)

• Theorem: Assume that the solution $(\lambda_1, ..., \lambda_J)$ is such that $\lambda_i < \mu_i$ for i = 1, ..., J. Then, the CTMC X_t admits the following invariant distribution:

$$\pi(x_1, \dots, x_J) = \pi_1(x_1) \dots \pi_J(x_J), \text{ where}$$

For each j, $\pi_j(n) = (1 - \rho_j)\rho_j^n$, for $n \ge 0$ and $\rho_j = \frac{\lambda_j}{\mu_j}$.

- I.e., each queue behaves like an M/M/1 queue with appropriate utilization.
- Referred to as Product Form Networks