EECS 126: Probability \& Random Processes Fall 2021

Little's Law + Jackson Networks
Shyam Parekh

Fundamental Result: Little’s Law

\rightarrow Average occupancy $=$ (average delay) x (average arrival rate)

Jackson Networks

- Definition:
- Network of J./M/1 queues,
- External arrivals occur according to independent Poisson processes with rate γ_{i} into queue i ,
- Service time at queue i is according to independent exponential distribution with rate μ_{i}, and
- When a customer leaves queue i, independent of the past, he joins queue j with probability $r(i, j)$ and leaves the network with probability $1-\sum_{j=1}^{J} r(i, j)$.

Jackson Networks (2)

- We assume that routing is such that every customer eventually leaves the network.
- Due to flow conservation, total arrival rate into queue i is given by

$$
\lambda_{i}=\gamma_{i}+\sum_{j=1}^{J} \lambda_{j} r(j, i), \text { for } \mathrm{i}=1,2, \ldots \mathrm{~J} .
$$

- For $\mathrm{t} \geq 0$, we define $X_{t}=\left(X_{1, t}, \ldots, X_{J, t}\right)$, where $X_{i, t}$ denotes total \# of customers at node i .
- X_{t} is a multidimensional CTMC.

Jackson Networks (3)

- Theorem: Assume that the solution $\left(\lambda_{1}, \ldots, \lambda_{J}\right)$ is such that $\lambda_{i}<\mu_{i}$ for $\mathrm{i}=1, \ldots, \mathrm{~J}$. Then, the CTMC X_{t} admits the following invariant distribution:

$$
\begin{aligned}
& \pi\left(x_{1}, \ldots, x_{J}\right)=\pi_{1}\left(x_{1}\right) \ldots . \pi_{J}\left(x_{J}\right), \text { where } \\
& \text { For each } \mathrm{j}, \pi_{j}(n)=\left(1-\rho_{j}\right) \rho_{j}{ }^{n}, \text { for } \mathrm{n} \geq 0 \text { and } \rho_{j}=\frac{\lambda_{j}}{\mu_{j}} .
\end{aligned}
$$

- I.e., each queue behaves like an $M / M / 1$ queue with appropriate utilization.
- Referred to as Product Form Networks

