1. **Estimating Parameter of Random Graph Given Average Degree**

Consider an Erdős–Rényi random graph on n vertices, in which each edge appears independently with probability p. Let D be the average degree of a vertex in the graph. Compute the maximum likelihood estimator of p given D. You may approximate $\text{Binomial}(n, p) \approx \text{Poisson}(np)$.

Solution: Let m be the number of edges in the graph, so that $D = \frac{2m}{n}$ by the handshake lemma. Write $M = \binom{n}{2}$. Since $m \sim \text{Binomial}(M, p) \approx \text{Poisson}(Mp)$,

$$
P(D = d; p) \approx \frac{M^{nd/2} p^{nd/2}}{(nd/2)!} e^{-Mp}.
$$

To obtain the log-likelihood, we take the logarithm and drop all terms which have no dependence on p, which gives the function

$$
\ell(d; p) \approx -\binom{n}{2} p + \frac{nd}{2} \ln p.
$$

Differentiating w.r.t. p, we see that the MLE for p is $p = \frac{D}{n - 1}$, which agrees with intuition: the average degree of a node is binomial with $n - 1$ potential neighbors and probability p for each edge, so the expected value of D is $(n - 1)p$.

2. Estimating Rate of Exponential Distribution

Given $X \in \{0, 1\}$, the random variable Y is Exponentially distributed with rate $3X + 1$.

a. Suppose that $P(X = 1) = p \in (0, 1)$. Find the MAP estimate of X given Y.

b. Find the MLE of X given Y.

Solution:

a. The MAP maximizes the posterior distribution $f_{X \mid Y}(x \mid y)$ over x for the given observation y, which is equivalent to maximizing the joint distribution $f_{X,Y}(x,y)$. We are given that

$$f_{X,Y}(0, y) = f_{Y \mid X}(y \mid 0) \cdot p_X(0) = (1 - p)e^{-y}$$
$$f_{X,Y}(1, y) = f_{Y \mid X}(y \mid 1) \cdot p_X(1) = 4pe^{-4y},$$

and $\text{MAP}(X \mid Y) = 1$ whenever $4pe^{-4Y} > (1 - p)e^{-Y}$. Thus

$$\text{MAP}(X \mid Y) = 1 \left\{ Y < \frac{1}{3} \ln \frac{4p}{1-p} \right\}.$$

b. The MLE is equal to the MAP with uniform prior, i.e. $p = \frac{1}{2}$:

$$\text{MLE}(X \mid Y) = 1 \left\{ Y < \frac{1}{3} \ln 4 \right\} \approx 1\{Y < 0.462\}.$$
3. **Gaussians and the MSE**

Suppose you draw \(n \) i.i.d. data points \((x_1, y_1), \ldots, (x_n, y_n)\), where the true relationship is given by \(Y = WX + \varepsilon \) for \(\varepsilon \sim \mathcal{N}(0, \sigma^2) \). In other words, \(Y \) has a linear dependence on \(X \) with additive Gaussian noise. Show that finding the MLE of \(W \) given the data points \(\{(x_i, y_i)\}_{i=1}^n \) is equivalent to minimizing the cost function

\[
J(w) = \sum_{i=1}^{n} (y_i - wx_i)^2.
\]

Solution: The likelihood of the data is

\[
L((x_1, y_1), \ldots, (x_n, y_n) \mid W = w) = \prod_{i=1}^{n} L((x_i, y_i) \mid W = w)
\]
as the data points are conditionally independent given \(W \);

\[
= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-(y_i - wx_i)^2/(2\sigma^2)}
\]
as the likelihood of \((x_i, y_i)\) given \(W = w \) is the density of \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2) \) evaluated at \(y_i - wx_i \);

\[
\propto \prod_{i=1}^{n} e^{-(y_i - wx_i)^2/(2\sigma^2)},
\]
discarding constant factors that do not depend on the data points or \(w \). We wish to maximize this expression w.r.t. \(w \), but we find it more convenient to work with the log-likelihood

\[
\ell((x_1, y_1), \ldots, (x_n, y_n) \mid W = w) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - wx_i)^2.
\]

We wish to maximize the log-likelihood, which is equivalent to minimizing the cost function

\[
J(w) = \sum_{i=1}^{n} (y_i - wx_i)^2.
\]
4. **Hypothesis Testing for Bernoulli Random Variables**

Suppose that

- If $X = 0$, then $Y \sim \text{Bernoulli}(\frac{1}{4})$.
- If $X = 1$, then $Y \sim \text{Bernoulli}(\frac{3}{4})$.

Using the Neyman–Pearson formulation of hypothesis testing, find the optimal randomized decision rule $r : \{0, 1\} \rightarrow \{0, 1\}$ with respect to the criterion

$$
\min_{r : \{0, 1\} \rightarrow \{0, 1\}} \mathbb{P}(r(Y) = 0 \mid X = 1)
$$

s.t. $\mathbb{P}(r(Y) = 1 \mid X = 0) \leq \beta$,

where $\beta \in [0, 1]$ is a given upper bound on the probability of false alarm (PFA).

Solution: The likelihood ratio is the discrete function

$$
L(y) = \frac{f_{Y \mid X}(y \mid 1)}{f_{Y \mid X}(y \mid 0)} = \begin{cases}
3 & \text{if } y = 1 \\
\frac{1}{3} & \text{if } y = 0.
\end{cases}
$$

By Neyman–Pearson, the optimal decision rule with randomization r is given by

- If $\mathbb{P}(Y = 1 \mid X = 0) = \frac{1}{4} \geq \beta$, then $r(0) = 0$ and $r(1) = 1$ with probability $\gamma = \beta / \frac{1}{4}$;
- Otherwise, $r(1) = 1$ and $r(0) = 1$ with probability $\gamma = \frac{4}{3} \beta - \frac{1}{3}$, which is chosen to make

$$
\text{PFA} = \mathbb{P}(Y = 1 \mid X = 0) + \gamma \cdot \mathbb{P}(Y = 0 \mid X = 0) = \frac{1}{4} + \frac{3}{4} \gamma = \beta.
$$