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Midterm 2

Last Name First Name SID

Left Neighbor First and Last Name Right Neighbor First and Last Name

Rules.

• Unless otherwise stated, all your answers need to be justified and your work must
be shown. Answers without sufficient justification will get no credit.

• You have 80 minutes to complete the exam. (DSP students with X% time accommodation
should spend 80 ·X% time on the exam).

• This exam is not open book. You may reference two double-sided handwritten sheets of paper.
No calculator or phones allowed.

• Collaboration with others is strictly prohibited. If you are caught cheating, you may fail the
course and face disciplinary consequences.

• Write in your SID on every page to receive 1 point.

Problem points earned out of

SID 1

Problem 1 39

Problem 2 12

Problem 3 21

Problem 4 21

Problem 5 16

Total 110



Midterm 2 Page 2 of 13 Student ID:

1 Probpourri [4 + 9 + 6 + 10 + 10 points]

(a) A Peeling Algorithm [4 points]

In lab, we implemented a peeling algorithm that requires singleton packets. Denote a packet as
a set of chunk indices. For example, packet {i, j, k} contains chunks i, j, k. Suppose we have not
decoded any chunks yet and receive four packets: {1, 2, 3, 5}, {2, 4}, {1, 3}, and {2}. Using the
peeling algorithm from lab, which chunks can be decoded? Show your decoding process.

Let {packet1}⊕{packet2} denote packet1 XOR packet2. We obtain chunk 2 naturally, and
we can compute {2, 4}⊕ {2} = {4} to get chunk 4. We can only obtain chunks 2 and 4.

(b) Sending a Message [4 + 5 points]

Consider a binary erasure channel (BEC), which erases channel input with probability p ∈ (0, 1).
We wish to send a message of length L bits, and we encode to a codeword of length n, where
n, L are positive integers and n > L. Define R := L

n
as the rate of the channel.

Now, recall Shannon’s random codebook argument: we flip n2L fair coins independently, and
populate a 2L × n codebook accordingly (2L codewords, each with length n). Suppose that the
first codeword is sent through the BEC.

(i) Give a tight upper bound on the number of bits that can be sent reliably over the channel.

(ii) Assume that your answer for part (i) is the actual number of unerased bits sent over the
BEC. If p = 0.1, n = 500, and L = 400, what is the tightest upper bound on P(Error)?

(i) There are n(1− p) unerased bits in expectation.

(ii) P(Error) = P

 2L⋃
i=2

{c1 = ci}

 ≤
2L∑
i=2

P(c1 = ci) ≤ 2L · 2−n(1−p) = 2−n(1−p−R).

Then plugging in values, we can upper bound P(Error) ≤ 2−50.
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(c) CTMC to DTMC [6 points]

Find the equivalent DTMC (with the fewest number of self-loops) that has the same stationary
distribution as the CTMC shown below. Draw out the DTMC and clearly label the states and
transition probabilities.

C

A B
1

2

3
4

5
6

To minimize the number of self-loops, we take the smallest possible uniformization constant
γ = maxi qi = max{7, 5, 9} = 9. Then the uniformized DTMC looks as follows.

C

A B

1
9

2
9

3
9

4
9

5
9

6
9

2
9

4
9
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(d) Cool Convergence [4 + 6 points]

(i) Let’s prove the Weak Law of Large Numbers! Let (Xi)
n
i=1 be i.i.d. zero-mean random

variables with finite variance σ2, and let Sn = 1
n

∑n
i=1Xi. Show that Sn converges to 0 in

probability as n → ∞.

Sn has a variance of σ2

n
. By Chebyshev’s inequality, P(|Sn| ≥ ε) ≤ var(Sn)

ε2
→ 0 as

n → ∞.

(ii) Now, take the sequence of independent random variables Y1, Y2, . . ., where each Yi has a
mean of 0 and variance of

∑i
j=1

1
j
. Namely,

var(Y1) = 1

var(Y2) = 1 +
1

2
=

3

2

var(Y3) = 1 +
1

2
+

1

3
=

11

6
...

Let Sn = 1
n

∑n
i=1 Yi. Show that Sn converges to 0 in probability as n → ∞.

Hint : You may use the fact that
∑n

k=1
1
k
≤ lnn+ 1.

var(Sn) =
1

n2

[
1 +

(
1 +

1

2

)
+

(
1 +

1

2
+

1

3

)
+ · · ·+

(
1 + · · ·+ 1

n

)]
=

1

n2

[
n · 1 + (n− 1) · 1

2
+ (n− 2) · 1

3
+ · · ·+ 1 · 1

n

]
<

1

n2

[
n ·

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)]
≤ ln(n) + 1

n
.

Again by Chebyshev’s inequality, P(|Sn| ≥ ε) ≤ var(Sn)
ε2

→ 0 as n → ∞.
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(e) Huffman Coding [5 + 5 points]

Consider the following characters and their probabilities of occurring. You may choose to break
ties (if any) however you like, as long as you are consistent throughout the problem.

Character Probabilities
E 0.15
A 0.10
O 0.08
I 0.07

Other chars ($) 0.6

(i) Create a Huffman Tree from the above table, treating ‘other characters’ as the character
‘$’. Label leaf nodes with the character and its corresponding codeword. How many bits
on average are used to encode a letter from this alphabet {A, E, I, O, $} with Huffman
coding?

1.0

0.4 ‘$’

[1]

0.25 ‘E’

[01]

0.15 ‘A’

[001]

‘I’ ‘O’

[0001][0000]

We can determine the average number of bits using the definition of expectation:
E[B] = 0.15 · 4 + 0.1 · 3 + 0.15 · 2 + 0.6 · 1 = 1.8.

Alternatively, we can use the tail-sum formula: E[B] = 0.15·1+0.25·1+0.4·1+1 = 1.8.

(ii) You decide to encode the 4 most common characters {A, E, I, O} with Huffman Coding
and use a fixed number of bits for each of the remaining 22 characters. Your scheme tries
to make this fixed number as small as possible and keep the scheme entirely prefix-free.
What is the expected number of bits to encode a character for such a scheme?
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In order to keep the scheme prefix free, we need ⌈log2(22)⌉ + 1 = 5 + 1 bits for the
remaining 22 characters (one bit to distinguish between {A, E, I, O} and the rest).
This means we can just replace $ in our Huffman Tree with a tree of depth 5 for the
remaining 22 characters. Then, we find that E[B] = 0.15 · 2 + 0.1 · 3 + 0.08 · 4 + 0.07 ·
4 + 0.6 · 6 = 4.8.
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2 Leap of Faith [12 points]

Consider the following continuous-time Markov chain. The state space is {0, 1, . . . , 126}, and the
transition rates are given by Q(0, i) = i and Q(i, (imod 126) + 1) = i for i = 1, . . . , 126.

0

1
1

1
2

2
2

3

3

3

· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
124

124
124

125

125

125

126

126

126

Find the stationary distribution πCTMC. Justify your answer using the definition of the stationary
distribution of a CTMC, or any equivalent conditions. You may leave your answer in terms of the
nth harmonic number Hn =

∑n
i=1

1
i
.

Let us consider using the associated jump chain of the CTMC to exploit the transition diagram’s
underlying symmetry. The transition probabilities of the jump chain are given by{

p(0, i) = i
(126·127)/2

p(i, (imod 126) + 1) = 1

for i = 1, . . . , 126. With the transition probability matrix P , the stationary distribution πjump

satisfies the vector-matrix equation

πjump = πjump



0 1
(126·127)/2

2
(126·127)/2

3
(126·127)/2 · · · 126

(126·127)/2
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
0 1 0 0 · · · 0


.

We see that if πjump exists, then πjump(0) = 0 by the rules of vector-matrix multiplication, which
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justifies the observation that state 0 is a transient state. We may then find

πjump =
[
0 πjump(126) πjump(1) πjump(2) · · · πjump(125)

]
=

[
0 1

126
1

126
1

126
· · · 1

126

]
.

Finally, we can find the stationary distribution of the original CTMC:

πCTMC(i) =

1
q(i)

πjump(i)∑126
j=0

1
q(j)

πjump(j)
=


0 if i = 0

1
q(i)∑126
j=1

1
q(j)

=
1

iH126

if i = 1, . . . , 126.

Alternatively, we may have considered solving πCTMCQ = 0, which nets us the same result.
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3 Remember the Titans [3 + 6 + 4 + 8 points]

Titans are attacking Berkeley! As a member of the Survey Corps, Reina has discovered that female
and male titans arrive independently according to Poisson Processes with parameters λf and λm

respectively.

(a) Let T1 be the time when the first titan arrives. What is E[T1]?

(b) Let T2 be the time when at least one female and at least one male titan have arrived. What is
E[T2]?

(c) Defining 0 < a < b < c, let N1 be the number of male titan arrivals during [0, b], and let N2 be
the number of female titan arrivals during [a, c]. What is the distribution of N1 +N2?

(d) Suppose that no female titans arrive in the time interval [0, 1]. If four titans arrived in the
interval [0, 2], what is the probability that exactly two of them were male?

(a) The arrivals of both types of titans is a merged Poisson process with parameter λf + λm,
so E[T1] =

1
λf+λm

.

(b) Denote the event that the first titan is male as M , and the first titan is female as F . Let
T F
1 be the first arrival time of a female titan, and TM

1 the first arrival time of a male titan.

E[T2] = E[T1] + E[Remaining time until first female arrives | M ] P(M)

+ E[Remaining time until first male arrives | F ] P(F )

= E[T1] + E[T F
1 | M ] P(M) + E[TM

1 | F ] P(F )

=
1

λf + λm

+

(
1

λf

)
λm

λf + λm

+

(
1

λm

)
λf

λf + λm

Note that the second equality arises from the memorylessness property.

Alternative solution. Defining X1 as the distribution of time until the first male titan
arrives, and X2 the distribution of time until the first female titan arrives, we are finding

E[max(X1, X2)] = E[max(X1, X2) + min(X1, X2)]− E[min(X1, X2)]

= E[X1 +X2]− E[min(X1, X2)] =
1
λm

+ 1
λf

− 1
λf+λm

,

which is equivalent to the expression above.

(c) The sum of two independent Poisson RVs is also Poisson. Thus, N1 + N2 is Poisson with
parameter λmb+ λf (c− a).

(d) We can model the number of male titans in [0, 2] as the number of arrivals of a Poisson
process with twice the rate (2λm) in half the interval ([1, 2]), then merge this with the female
titans’ arrival process. The probability of a titan being male in this new merged process is
thus 2λm

2λm+λf
, so out of 4 titans, the probability that two were male is

(
4
2

)
( 2λm

2λm+λf
)2(

λf

2λm+λf
)2.
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Alternative solution. Let A be the event that there are two male arrivals in [0, 2], B
the event that there are no female arrivals in [0, 1], and C the event that there are 4 total

arrivals. We see that P(A) = (2λm)2

2!
e−2λm and P(B) = e−λf . Then,

P(A | B,C) =
P(A,B,C)

P(B,C)

=
P(A) · P(B) · P(C | A,B)

P(B) · P(C | B)

=

(
(2λm)

2

2!
e−2λm ·

λ2
f

2!
e−λf

)/(
(2λm + λf )

4

4!
e−(2λm+λf )

)

=
4!λ2

mλ
2
f

(2λm + λf )4
.
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4 Exploring Genes [6 + 6 + 9 points]

Jennifer Doudna is exploring genes, which are expressed as strings containing the characters A, G,
C, and T . A gene starts as an empty string. At every time step, with probability 4

5
, a character is

appended to the string (with each of the four characters having equal probability to be appended),
and with probability 1

5
, the last character in the string is deleted. If the empty string undergoes

deletion, it yields the empty string again.

(a) Consider a Markov Chain with states corresponding to the current length of the gene sequence.
Is this Markov Chain positive recurrent, null recurrent, or transient? Please justify your answer.

(b) What is the probability that the first time there are three characters in the string, they are all
distinct?

(c) For this part only, suppose that genes are expressed as strings containing only either A or T .
Let there be an equal probability of writing an A, writing a T , and deleting the last character.

Draw a Markov chain, then set up and solve the first step equations for determining the
expected amount of time until there is a duplicate in the string.

(a) Group the states by the amount of characters in them. The chain then looks like:

0 1 2 3 · · ·1
5

4
5

1
5

4
5

1
5

4
5

1
5

4
5

1
5

Note that this Markov chain is the random walk reflected at 0 with probability of transi-
tioning right as 4

5
> 1

2
, so the chain is transient.

(b) Notice that there is symmetry between each of the 4 nucleotides at each step of the process.
When there are three characters in the string, each nucleotide is equally likely to be in
each slot. This means the probability is the chance to pick 3 distinct things from a discrete
uniform distribution of size 4, i.e.:

4 · 3 · 2
4 · 4 · 4

=
3

8

Alternatively, one can set up a Markov Chain and solve the first-step equations.

(c) We make the following Markov Chain, where Ci represents the state with only i distinct
characters in the string (without duplicates) and D is the state where we have a duplicate.
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C0 C1 C2

D

1
3

2
3

1
3

1
3

1
3

1
3

2
3

Call f(·) the expected amount of time to reach D. Note that f(D) = 0. This yields the
following system of equations:

f(C0) = 1 +
1

3
f(C0) +

2

3
f(C1)

f(C1) = 1 +
1

3
f(C0) +

1

3
f(C2)

f(C2) = 1 +
1

3
f(C1)

Solving the system of equations yields

f(C0) =
24

5
.
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5 Cory Bussin’ [6 + 4 + 6 points]

Assume that the F line makes stops in front of Cory Hall according to a Poisson Process with a
finite rate λ.

(a) Show that for a Poisson Process starting at t = 0, as t → ∞ the probability that there is at
least one arrival is 1.

(b) Andy just finished class and arrives at the bus stop. Seeing no bus at the stop, he wonders,
what is the distribution of the time T between the previous bus that left, and the next bus
to arrive? (Suppose that the Poisson Process has been running for an infinitely long period of
time, so that there was at least one bus arrival before he arrived.)

(c) Find P(T > t).

(For full credit, your answer should not have a summation term or integral. For partial credit,
you can express it in an infinite summation or integral.)

(a) The number of bus arrivals in an interval of time t is distributed as Poisson(λt), which takes
the value 0 with probability e−λt. Then, as t → ∞, e−λt → 0.

(b) By the Random Incidence Property, the distribution of time between the previous bus arrival
and your arrival is Exponential(λ), and the distribution of time between your arrival and
the next bus arrival is Exponential(λ), independently. Then, the total time has distribution
Erlang(2, λ).

(c) The event that it takes longer than t time to see two bus arrivals is equivalent to seeing one
or fewer bus arrivals in t time. Thus,

P(T > t) = P(Nt ≤ 1) = P(Nt = 0) + P(Nt = 1) = e−λt + e−λtλt.

For partial credit, one can simply integrate over the probability density of Erlang(2, λ),
which gives

P(T > t) =

∫ ∞

t

λ2xe−λx dx.


