1. **Midterm**

Solve again the midterm problems which you got incorrect. Please demonstrate understanding of the questions without simply copying the solutions.
2. Uniformization

Consider the CTMC with state space \(\{1, 2, 3\} \) and rate matrix

\[
Q = \begin{bmatrix}
-4 & 1 & 3 \\
0 & -3 & 3 \\
1 & 1 & -2
\end{bmatrix}.
\]

a. Let \(\lambda = 5 \). Find the transition probability matrix of the uniformized chain.

b. Describe what \(\lambda \) represents. Why must \(\lambda \geq \max_i q_i \)?

c. Intuitively, why does the probability of a self-jump increase when \(\lambda \) increases?
3. Connected Random Graph

We start with the empty graph on \(n \) vertices. Iteratively, we add an undirected edge \(\{u, v\} \), chosen uniformly at random from the edges that are not yet present in the graph, until the graph is connected. Let \(X \) be the random variable equal to the total number of edges in the graph. Show that \(E(X) \in O(n \log n) \).

Hint: consider \(X_k \), the number of edges added while there are \(k \) connected components until there are \(k - 1 \) connected components. Do not try to calculate \(E(X_k) \), as an upper bound is enough.
4. Isolated Vertices

Consider an Erdős–Rényi random graph $G(n, p(n))$, where n is the number of vertices and $p(n)$ is the probability that any specific edge appears in the graph. Let X_n be the number of isolated vertices in $G(n, p(n))$. Show that

$$\mathbb{E}(X_n) \xrightarrow{n \to \infty} \begin{cases}
\infty, & p(n) \ll \frac{\ln n}{n} \\
\exp(-c), & p(n) = \frac{(\ln n) + c}{n} \\
0, & p(n) \gg \frac{\ln n}{n}.
\end{cases}$$

The asymptotic notation $p(n) \ll f(n)$ means that $\frac{p(n)}{f(n)} \to 0$ as $n \to \infty$. Also show that in the case of $p(n) \gg \frac{\ln n}{n}$, we have $X_n \to 0$ in probability as well.

Hint: from Taylor series expansion, one can show that $\ln(1 + x) < x$ for any x, and moreover $\ln(1 + x) \approx x$ when x is small.
5. **Subcritical Forest**

Consider a random graph $G(n, p(n))$ with $p(n) = o\left(\frac{1}{n}\right)$ (this is called the subcritical phase).

a. Let X_n be the number of cycles in the graph. Show that $E(X_n) \to 0$.

b. Show that the probability that $G(n, p(n))$ is a forest tends to 1 as $n \to \infty$. A forest is a possibly disconnected graph which contains no cycles.