1. Joint Occurrence

You know that at least one of the events A_i, $i = 1, \ldots, n$, is certain to occur, but certainly no more than two occur. n is an integer ≥ 2. Show that if the probability of occurrence of any single event is p, and the probability of joint occurrence of any two distinct events is q, we have $p \geq \frac{1}{n}$ and $q \leq \frac{2}{n(n-1)}$.

Solution: By the union bound, since

$$1 = P\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} P(A_i) = np,$$

we see that $p \geq \frac{1}{n}$. Now we observe that the events $A_i \cap A_j$ for $i < j$, $i, j \in \{1, \ldots, n\}$ are pairwise disjoint, so by finite additivity,

$$1 \geq P\left(\bigcup_{i<j} A_i \cap A_j\right) = \sum_{i<j} P(A_i \cap A_j) = \binom{n}{2} q,$$

so $q \leq \frac{1}{\binom{n}{2}} = \frac{2}{n(n-1)}$.

2. Packet Routing

Consider a system with \(n \) inputs and \(n \) outputs. At each input, a packet appears independently with probability \(p \). If a packet appears, it is destined for one of the \(n \) outputs uniformly randomly, independently of the other packets.

a. Let \(X \) denote the number of packets destined for the first output. What is the distribution of \(X \)?

b. What is the probability of a collision (that is, more than one packet heading to the same output)?

Solution:

a. The probability that there exists a packet at an input and the packet is destined for the first output is \(\frac{p}{n} \). By the independence over inputs, \(X \) has the binomial distribution \(\text{Binomial}(n, \frac{p}{n}) \).

b. Let \(C \) be the event of a collision and let \(N \) be the total number of packets in all inputs. Given that there are \(k \) packets at the input, where \(k \in \{0, \ldots, n\} \), the probability that there is no collision is

\[
P(C^c \mid N = k) = \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-k+1}{n} = \frac{n!}{(n-k)!n^k}.
\]

The first packet can land anywhere, the second packet has to avoid the first packet, and can thus land in any of the \(n-1 \) remaining outputs, and so on. Therefore

\[
P(C) = 1 - P(C^c) = 1 - \sum_{k=0}^{\infty} P(C^c \mid N = k) \cdot P(N = k)
\]

\[
= 1 - \sum_{k=0}^{n} \frac{n!}{(n-k)!n^k} \binom{n}{k} p^k (1-p)^{n-k}.
\]
3. Compact Arrays

Consider an array of \(n \geq 1 \) entries, where each entry is chosen uniformly randomly from \([0, \ldots, 9]\). We want to make the array more compact by putting all of the nonzero entries together at the front of the array. For example, if we take the array

\[
\begin{bmatrix}
6 & 4 & 0 & 0 & 5 & 3 & 0 & 5 & 1 & 3
\end{bmatrix}
\]

and make it compact, we now have

\[
\begin{bmatrix}
6 & 4 & 5 & 3 & 5 & 1 & 3 & 0 & 0 & 0
\end{bmatrix}
\]

Let \(i \) be a fixed positive integer in \([1, \ldots, n]\). Suppose that the \(i \)th entry of the array is nonzero. (The array is indexed starting from 1.) Let \(X_i \) be the random variable equal to the index that the \(i \)th entry has been moved to after making the array compact. Calculate \(E(X_i) \) and \(\text{var}(X_i) \).

Solution: Let \(Y_j, j = 1, \ldots, i - 1 \), be the indicator that the \(j \)th entry of the original array is 0. Then the \(i \)th entry is moved backwards \(\sum_{j=1}^{i-1} Y_j \) positions, so

\[
E(X_i) = i - \sum_{j=1}^{i-1} E(Y_j) = i - \frac{i - 1}{10} = \frac{9i + 1}{10}.
\]

The variance is also straightforward to compute by the independence of the indicators \(Y_j \). We note that \(\text{var}(Y_j) = \frac{1}{10} \cdot \frac{9}{10} = \frac{9}{100} \), so

\[
\text{var}(X_i) = \text{var} \left(i - \sum_{j=1}^{i-1} Y_j \right) = \sum_{j=1}^{i-1} \text{var}(Y_j) = \frac{9(i - 1)}{100}.
\]
4. **Lightbulbs**

Consider an $n \times n$ array of switches. Each row i of switches corresponds to a single lightbulb L_i, so that L_i lights up if at least i switches in row i are flipped ON. All of the switches start in the OFF position, and each is flipped ON with probability p, independently of all others. What is the expected number of lightbulbs that will be lit up? Express your answer in closed form without any summations.

Solution: The number of switches ON in each row $i = 1, \ldots, n$ is a random variable $X_i \sim \text{Binomial}(n, p)$. We are interested in the following expectation, which is

$$E(1_{X_1 \geq 1} + 1_{X_2 \geq 2} + \cdots + 1_{X_n \geq n}) = \sum_{i=1}^{n} E(1_{X_i \geq i}) = \sum_{i=1}^{n} \mathbb{P}(X_i \geq i) = \sum_{i=1}^{n} \mathbb{P}(X \geq i)$$

by linearity. X is any random variable with distribution $\text{Binomial}(n, p)$. Then, by the tail-sum formula, this is just $E(X) = np$.

4
5. Expected Sorting Distance

Let \((a_1, \ldots, a_n)\) be a random permutation of \(\{1, \ldots, n\}\), so that it is equally likely to be any possible permutation. When sorting the list \((a_1, \ldots, a_n)\), the element \(a_i\) must move a distance of \(|a_i - i|\) places from its current position to reach the position in the sorted order. Find the expected total distance that the elements will have to be moved,

\[
E \left(\sum_{i=1}^{n} |a_i - i| \right)
\]

Note: To simplify your answer, you can use the formula

\[
\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.
\]

Solution: By the linearity of expectation, we have that

\[
E \left(\sum_{i=1}^{n} |a_i - i| \right) = \sum_{i=1}^{n} E(|a_i - i|).
\]

Because all of the permutations are equally likely, \(a_i\) is equally likely to be any number from 1 to \(n\). Thus

\[
E(|a_i - i|) = \frac{1}{n} \sum_{k=1}^{n-i} k
\]

\[
= \frac{1}{n} \sum_{k=1}^{n-i} k + \frac{1}{n} \sum_{k=1}^{i-1} k
\]

\[
= \frac{(n-i)(n-i+1) + (i-1)i}{2n}.
\]

Putting it all together, and using the closed-form formula for \(\sum_{k=1}^{n} k^2\), we obtain

\[
E \left(\sum_{i=1}^{n} |a_i - i| \right) = \frac{n^2 - 1}{3}.
\]
6. Poisson Properties

a. **Poisson merging.** Suppose X and Y are independent Poisson random variables with means λ and μ respectively. Prove that $X + Y$ has the Poisson distribution with mean $\lambda + \mu$.

Note: It is not enough to use linearity of expectation to say that $X + Y$ has mean $\lambda + \mu$. You are asked to prove that the distribution of $X + Y$ is Poisson.

b. Given X and Y as above, what is the distribution of X conditioned on $X + Y = z$, $z \in \mathbb{N}$?

c. **Poisson splitting.** Suppose that $Z \sim \text{Poisson}(\lambda)$. We flip Z independent coins, each with probability of heads p. Let X be the number of heads, and let Y be the number of tails, so that $Z = X + Y$. Show that X and Y are independent Poisson random variables with means λp and $\lambda (1 - p)$ respectively.

Solution:

a. The distribution of the sum of two independent random variables is the convolution of their individual distributions. For $z \in \mathbb{N}$, we have

$$
P(X + Y = z) = \sum_{x=0}^{z} P(X = x) \cdot P(Y = z - x)
$$

$$
= \sum_{x=0}^{z} \frac{\lambda^x}{x!} e^{-\lambda} \cdot \frac{\mu^{z-x}}{(z-x)!} e^{-\mu}
$$

$$
= \frac{e^{-(\lambda+\mu)}}{z!} \sum_{x=0}^{z} \frac{z!}{x!(z-x)!} \lambda^x \mu^{z-x}
$$

$$
= \frac{e^{-(\lambda+\mu)}}{z!} \sum_{x=0}^{z} \binom{z}{x} \lambda^x \mu^{z-x}
$$

$$
= \frac{e^{-(\lambda+\mu)}}{z!} (\lambda + \mu)^z,
$$

which shows that $X + Y \sim \text{Poisson}(\lambda + \mu)$.

b.

$$
P(X = x \mid X + Y = z) = \frac{P(X = x, X + Y = z)}{P(X + Y = z)}
$$

$$
= \frac{P(X = x) \cdot P(Y = z - x)}{\frac{(\lambda + \mu)^z}{z!} e^{-(\lambda+\mu)}}
$$

$$
= \frac{\lambda^x}{x!} e^{-\lambda} \cdot \frac{\mu^{z-x}}{(z-x)!} e^{-\mu} \left/ \left(\frac{(\lambda + \mu)^z}{z!} e^{-(\lambda+\mu)} \right) \right.
$$

$$
= \binom{z}{x} \left(\frac{\lambda}{\lambda + \mu} \right)^x \left(\frac{\mu}{\lambda + \mu} \right)^{z-x},
$$

which shows that $X \mid X + Y = z \sim \text{Binomial}(z, \frac{\lambda}{\lambda + \mu})$.

c. By symmetry, it is enough to show that $X \sim \text{Poisson}(\lambda p)$.

\[
\mathbb{P}(X = x) = \sum_{z=x}^{\infty} \mathbb{P}(Z = z) \cdot \mathbb{P}(X = x \mid Z = z)
\]
\[
= \sum_{z=x}^{\infty} \frac{\lambda^z}{z!} e^{-\lambda} \binom{z}{x} p^x (1 - p)^{z-x}
\]
\[
= \frac{(\lambda p)^x}{x!} e^{-\lambda} \sum_{z=x}^{\infty} \frac{(\lambda(1 - p))^{z-x}}{(z-x)!}
\]
\[
= \frac{(\lambda p)^x}{x!} e^{-\lambda} e^{\lambda(1-p)}
\]
\[
= \frac{(\lambda p)^x}{x!} e^{-\lambda p}.
\]

We also need to show that X and Y are independent:

\[
\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x, Y = y \mid Z = x + y) \cdot \mathbb{P}(Z = x + y)
\]
\[
= \binom{x + y}{x} p^x (1 - p)^y \cdot \frac{\lambda^{x+y}}{(x+y)!} e^{-\lambda}
\]
\[
= \frac{(x+y)!}{x! \cdot y!} p^x (1 - p)^y \cdot \frac{\lambda^x}{(x)!} \frac{\lambda^y}{(y)!} e^{-\lambda p} e^{-\lambda(1-p)}
\]
\[
= \frac{(\lambda p)^x}{x!} e^{-\lambda p} \cdot \frac{(\lambda(1 - p))^y}{y!} e^{-\lambda(1-p)}
\]
\[
= \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y).
\]

Remark: These properties will be used extensively when we discuss the Poisson process.