Probability and Random Processes


Poisson Puffin

Fall 2023
Jiantao Jiao

Lecture: Tue & Thu 11:00 am - 12:29 pm, Valley Life Sciences 2060
Office Hour: Tue 1:30 pm - 2:30 pm, Cory-212 (1:00-2:00 pm on 09/05, 10/24)

Announcements

Lecture Schedule

Schedule is subject to some changes.

Date Topics Readings
08/24 Introduction, Probability Spaces, Conditional Probability, Law of Total Probability B-T 1
08/29 Independence, Bayes Rule, Discrete Random Variables B-T 1, 2
Random Variables
08/31 Expectation, Uniform, Geometric, Binomial and Poisson Distributions B-T 2
09/05 Variance, Conditional / Iterated Expectation B-T 2
09/07 Continuous Probability, Uniform, Exponential Distributions B-T 3
09/12 Gaussian Distribution, Derived Distributions, Continuous Bayes B-T 3, 4.1-4.2
09/14 Covariance, Gaussian Distribution B-T 4.3-4.6
09/19 Multivariate Gaussian, MGFs, Bounds/Concentration Inequalities (Markov, Chebyshev) B-T 4.4, 5.1,
Multivariate Gaussian
09/21 Convergence, Weak and Strong Law of Large Numbers, Central Limit Theorem B-T 5.2-5.6, W 2.1-2.3
Convergence
09/26 No Lecture (Midterm 1)
09/28 Information Theory Information Theory
10/03 Binary Erasure Channel Capacity W 1, 13.3, B-T 7.1-7.4
Capacity
10/05 Information Theory Wrapup  
10/10 Discrete Time Markov Chains, Stationary Distribution, Hitting Time, First Step Equations W 1, 2.4, 2.6, 13.3, B-T 7.1-7.4
Markov Chains
10/12 DTMCs: Reversibility, Infinite States, Classification, Big Theorem Reversibility
10/17 DTMC Wrapup B-T 6.1-6.3, W 13.4
10/19 Poisson Processes: Counting Process, Memorylessness, Merging, Splitting B-T 6.1-6.3, W 13.4
Poisson Process
10/24 PP: Erlang Distribution, Random Incidence B-T 6.1-6.3, W 13.4
10/26 Continuous Time Markov Chains: Rate Matrix and Stationary Distribution B-T 7.5, W 13.5
10/31 No Lecture (Midterm 2)  
11/02 CTMCs: Big Theorem, First Step Equations and Jump Chain B-T 7.5, W 13.5
CTMCS
11/07 Erdos-Renyi Random Graphs Random Graphs
11/09 Maximum Likelihood Estimation, Maximum a Posteriori Estimation B-T 8.1-8.2, 9.1, W 5.1
11/14 Statistical Hypothesis Testing, Neyman-Pearson Lemma Hypothesis Testing
B-T 9.3-9.4, W 5.5-5.6, 6.5
11/16 Linear Least Square Estimate, Vector Space of Random Variables Hilbert space of RVs
B-T 8.3-8.5, W 7.1-7.5
11/21 Minimum Mean Square Error Estimation W 7.1-7.5, W 8.1
11/23 No Lecture (Thanksgiving)  
11/28 Jointly Gaussian Random Variables W 6.3-6.4, 7.6, 8.1-8.3
Jointly Gaussian RVs
11/30 Orthogonal Updates and Kalman Filter W 7.6, 8.1-8.3
Kalman Filter (1)
Kalman Filter (2)