Final Exam Solution

The exam is for exactly 3 hours.
There are 9 problems.

The maximum score is 100 points.
The exam is open book and notes.

1. (36 = 6 x 6 poinis) For each of the following statements, indicate
whether you believe that the statement is true or believe it is false,
and give a brief explanation of your reasoning. A correct answer with-
out a valid explanation gets 2 points. A correct answer with a valid
explanation gets 6 points.

(a) If A;, Ay, and Az are events such that

_ (b)

P(Al | Ag) > P(Al) and P(AQ | Ag) > P(AQ)

then
P(A) | A3) > P(A;) .

Solution :
The statement is FALSE.

For example, let the sample space be the unit interval with the
probability assigned to an event (a subset of the unit interval)
equal to its length, and let 41 = [ll—ﬁ,i), Ay = [5—15, %], and Az =
(%, %]. Then

P(AinA) L 1_ 3
PlAj|A))=———"22 =8 =_>5 = = P(4))
P(Aj) 23716
and
P(A2Nn A i 4 3
P(A2|A3)=(P?T3)3)=i=g>§=}3(:42).
16

However P(A; | A3) = 0 and this is less than P(4;) = %.

Let A;, Ay, and As be events with 0 < P(A3) < 1. Suppose
A; and Ay are conditionally independent given Az and are also
conditionally independent given A§. Then A; and As are inde-
pendent.



()

Solution :
The statement is FALSE.

For example, suppose the sample space is the unit square, i.e
{{z,y) + 0< 2 <1,0<y <1}, with the probability of an event
(a subset of the unit square) equal to its area. Let A3 be defined
by

Az = {(z,y) : ngﬁé}.
Let

and let
AQ:{(x}y) 0z <

Then A; N Az = AN Az = Az. Hence
P(Al N As ] Ag) = i P(Al [ Ag)P(AQ I Ag) ,
so A; and Ay are conditionally independent given As.
Also, P(A; N A3) = P(A2 N A§) = %, P(A§) = 2, and P(41 N
Ax N AS) = %. Hence

1
P(41N A2 | 45) = § = 3 = P(A1 | A)P(4s | 45) ,

wira|mi—

so A; and Ay are conditionally independent given A§.

However, we have P(A4;) = P(A4y) = % and P(A; N Ag) = %, S0
A; and A; are not independent.

Let X be a nonnegative integer valued random variable and let
G x(z) denote its generating function. If (Gx(z))? = Gx(2?) for
all z, then X must be a constant.

Solution :

This statement is TRUE.

Let p,, denote P(X =n),n=0,1,2,... ThenGx(z) = 32 ; pn2™.
Let & denote the smallest integer such that pr > 0. Then the
smallest degree term in Gx(z) is ¥ and its coefficient is p.
Hence the smallest degree term in (Gx(z))? is z?* and its co-
efficient is pZ. However, we also have that the smallest degree
term in Gx(z:z) is z%*, and its coefficient is pr- The given as-
sumption could hold only if p? = pi. Since py > 0, it follows that
pr = 1. Hence X equals the constant k.




(d)

For any random variable X and any a > 0 we have

1

P(| X |<a) < aQE[FE] :

Solution :
This statement is TRUE.
Let YV denote )1—( Then Chebyshev’s inequality gives

P(Y |> é) < a?E[Y?] .

Since {| Y |> 1} = {| X |< a} this is the same as

1

P(| X |< o) < aE[5]

which was to be shown.

Let X and Y be random variables, and let Z = 2Y. Then E[X |
Y] =FE[X| Z].

Solution :

This statement is TRUE.

Since E[X | Y] is a function of Y, it is also a function of Z
(substitute £ for ¥). The defining characteristic of E[X | Z]

is the orthogonality principle, which says that the error term
X — E[X | Z] should satisfy

E[(X-E[X | z))g(2)] =0

for every function g satisfying E[g(Z)?] < co. But this is satisfied
by E[X | Y], because every function of Z is also a function of ¥’
(substitute 2Y for Z).

Let X and Y be random variables, and let Z = X1(X > 2).
Then E[X | Y] > E[Z|Y].

Solution :

This statement is TRUE.

Since X > Z we have X —Z > 0. Hence E[X —Z | Y] > 0, which,
by linearity of conditional expectation, is the same as what was
to be shown.



2. (8 points) Alice and Bob play the following game. First, each of them
independently picks a random number from {1,2,...,10}. If the num-
ber picked by Alice is less than or equal to the number picked by Bob,
then Alice loses. Otherwise, Alice picks another number at random
from {1,2,...,10}, independently of the previously chosen numbers.
If the second number picked by Alice is less than or equal to the num-
ber picked by Bob, a draw is declared. If the second number picked
by Alice is bigger than the number picked by Bob, then Alice wins.

Find the probability that Alice wins.
Solution :

We may pretend that Alice picks a second time even if there is no need
to do so. Let A denote the event that Alice wins.

For 1 < k < 10, let By, denote the event that Bob picks the number k.
Let Cy denote the event that Alice picks the number & the first time
that she picks. Let Dj denote the event that Alice picks the number
k the second time that she picks.

Conditioned on By, Alice wins on the event (U/2, _,C))N(UI0_, | D,,).
Thus

10

P(A)=Y P(B.)P(A| By) = Z P(Bg) P((Ui2 11 CON(UR_ 11 D) | By) -

k=1 k=1

The choices of Alice are independent of those of Bob. Hence we may
write this as

10
P(4) = 35 Y- PV O 0 (s D)
k=1

where we have used P(By) = % for each 1 < k < 10.

The choices of Alice each time she picks are also independent. Hence
we may write this as

1 Lo
P(A) = 10 Z P(U}gk+ICI)P(U:?E=k+1Dm)
k=1

i, 20 k
- _§ 1o 2
10;;:1( 10/



1 909+ 1)(18+ 1)

1000 6

a7
200 0.285

where we have used the formula 37, m? = ﬂn—t%iw‘

. (6 points) Let Y ~ Exp(5). Let Z = Y2 4+ 2YS. Find f.
Solution : The map z = g(y) = y'? + 2y® has range [0, 00). Every

z > 0 has two inverse images

(Vite—1)Eand — (VIz—-1)% .

Also, we have ¢'(y) = 12y'! + 12¢°.

We have fy(y) = 5e>¥1(y > 0). Hence we need only worry about the
nonnegative inverse image of each z > (). Using the Jacobean rule, we
have

1 —5{\fl+z—l)£]$_ .
5 fz>0
fz(2) = { 12(vF=-1ne+(vIF2-1)8) i s
0 otherwise

. (6 points) The skewness of a random variable X is defined to be
E[(X —m)’]
o3
and its kurtosis is defined to be

E[(X —m)1] - 301

at

Here m denotes E[X] and o2 denotes Var(X).
Find the skewness and the kurtosis of a Uni f([a, b]) random variable.

Solution : From the definitions, we see that the skewness of any random
variable X is the same as that of the random variable X + ¢ for any
constant ¢, and the same is true of the kurtosis. Thus, we may assume
without loss of generality that we are dealing with mean zero random



variables. Namely, if we let d = b—T“, we may assume that we are
considering X ~ Unif([—d,d]).
Since z° is an odd function and the density of X is an even function,

we see immediately that the skewness of X is zero.

For the kurtosis, we observe that it is invariant under scaling, i.e. the

kurtosis of ¢X is the same as that of X, for any constant ¢. Thus, it

suffices to consider X ~ Um'f[—%,, %—,] This has variance o? = ﬁ and

1
2 1
B[X* =f2 B |
x4 = [ stie= g5
so we see that the kurtosis is

L.
L _3=-12.
144

. (6 points) Random variables X, X5, X3, X4 are i.i.d. exponentially
distributed random variables, with each having mean 3.

Let

U = X1+2X+3X3+4X,
V = 4X1+3X2+2X3+X4

Find the correlation coefficient of U and V.
Solution :

If X ~ Ezp(A) then E[X] = i, so in our problem we have X1,..., X3
are i.i.d. ~ Ezp(3). Also, if X ~ Ezp(\) then Var(X) = Ilg, S0 in
our problem, each X; has variance 9. This gives

Var(U) =Var(V)=(14+4+9+ 16)Var(X;) = 270 .
As for the covariance, we have
Cou(U,V)=(4+6+6+4)Var(X;) =180.

From this, the correlation coefficient of U and V can be computed as

180 2



6. (6 points) Random variables X and Y have joint density

: - o
vy = | & 1S (@= 12+ (y—3)? and S 4 2020 o
0 otherwise

Find E[X | Y].
Solution :

The joint density of X and Y is uniform on the region between the
ellipse centered at (1,3) with major semi-axis of length 3 along the
z-axis and minor semi-axis of length % along the y-axis, and the circle
of radius 1 centered at (1, 3).

If we condition on any value of ¥, 2 sy = — we see that the condi-
tional density of X is symmetric about x = 1 Thus the conditional
mean of X conditioned on Y = y would be 1.

It follows that E[X | Y] = 1.

7. (6 points) Either explicitly give an example or describe how to con-
struct an example of random variables X, Y, and Z such that X and
Y are jointly Gaussian, Y and Z are jointly Gaussian, and X and Z
are jointly Gaussian, but X, Y, and Z are not jointly Gaussian.

Solution :
Let ! -
"ty +z
h(z,y, 2) g€ 2

o —
(2m)2
This is the joint density of three independent Gaussian random vari-
ables each with mean zero and variance 1. Let

_J 1 ifze[-4,3], yel-L,1], andze[-4,1]
a(z,y, 2) = { 0 otherwise

Now, define

flz,y,2) = h(z,y,2) +6> D (—1)=T5vtSrq(z— 55, y— 5y, 2— 5;)

Sp Sy 8z

where the sum is over the eight possibilities given by s, = +1, 5, = +1,
and s, = =1, and § > 0 is sufficiently small such that f(z,y,z) > 0
for all (z,y, z). Then f is a valid joint density. If random variables X,




Y, and Z have this joint density then they are not jointly Gaussian.
However, by integrating out any one of the components one can see
that X and Y are jointly Gaussian, Y and Z are jointly Gaussian, and
X and Z are jointly Gaussian.

. (10 points) Random variables X, Y, and Z are jointly Gaussian, with
each having mean zero, and with covariance matrix

= = b

1
10
3

by BN P e

Let U= (X —Y)® and let V = (Y — 3Z)2. Find the joint density of
U and V.

Solution :

Let W; denote X — Y and W, denote ¥V — 3Z. As linear functions of
jointly Gaussian random variables, W, and W; are jointly Gaussian.
Each has mean zero, and their covariance matrix is

1 -1 0 2 w0 = o 10 0
0 1 -3 1 10 3 -1 1= 0o 37| -
0 3 5 0 3

Since this is a diagonal matrix, W; and W, are independent. Since U
is a function of W, (we have U = W}) and V is a function of Ws (we
have V = W$) it follows that I/ and V are independent. Hence

fov(u,v) = fu(u)fv(v) .

To find fy(u), note that U = g(W;), where g(x) = z°. This is a one
to one map from R on to R, with ¢~ (u) = us. Also g'(z) = 5z
Using the Jacobean rule, we have

folu) 1= i)
()|
1 1 uf

—_— 2
51;2‘ v%‘l'—

where we have used the fact that W) ~ N(0, 10).

i=1



To find fv(v) note that V = h(W,), where h(z) = x2. The range of h
is [0, 00) and every point v in the range other than 0 has two inverse
images under h, namely +,/v. Also, h/(z) = 2z. Using the Jacobean
rule, we have

W) = [V + e (Vo)
1 1 v
- Vovar
where we have used the fact that W, ~ N (0, 37).
. (4 + 4 + 2 + 6 points)
Six players, numbered 1,2, ...,6, play a game involving successive in-

dependent rolls of a fair die, as follows. At any given time a subset
of the players is considered “active” and the others are considered
“dead”. The die is rolled. If the die comes up i and if player 7 is
currently active, then player i becomes dead. The status of the other
players does not change, i.e. other active players continue to stay ac-
tive and other dead players continue to stay dead. If the die comes up
¢ and if player 4 is currently dead, then player ¢ becomes active. The
status of the other players does not change.

The initial condition of the game (which players are active at time 0)
is assumed to be independent of the rolls of the fair die.

(a) Describe the evolution of the system as a discrete time Markov
chain. The state space you choose should be detailed enough that
the status of each player at any time can be determined from the
state at that time. Use the convention that the status of a player
at time n is the status prior to the roll of the die at time n.

(b) Determine the transition probability matrix of the Markov chain.
(c) Is the Markov chain irreducible 7

(d) Determine all possible stationary probability distributions for the
Markov chain.

Solution :

(a) We may choose as state space for the Markov chain the set of
all subsets of {1,2,...,6}. Thus the state space has cardinality




(d)

6 = 64. State A C {1,2,...,6} is meant to indicate that the
players in A are active at time n and the players not in A are
dead (by convention, the status of a player at time n is taken to
be the one before the roll of the fair die at time n). Additional
information about the state of the system prior to time 7 does not
affect the conditional distribution of events relating to the future
after time n given the state at time n, because the evolution after
time n depends only on the rolls of the die at times n,n + 1, .
and these are independent of the state at times n and before
Hence if X, denotes the state at time n then (X,,n > 0) is a
Markov chain.

If the current state is A = () then the next state is {7} with proba-
bility & for each 1 <4 < 6. If the current stateis A = {1 2,...,6}
then the next state is {1,2,...,6}—{z} with probability for each
<3< 6:

If the current state is A with 1 <| 4 |< 5, then the next state is
A — {i} for each i € A mth probability & and it is 4 U {¢} for
each i ¢ A with probability o

This completely determines the transition probability matrix of
the Markov chain (X,,n > 0).

Every state communicates with every other state, as can be seen,
for instance, by observing that every state communicates with
the state (). Hence the Markov chain is irreducible.

Since the Markov chain is irreducible, it has a unique stationary
distribution. Let w(A) note the stationary distribution of state
A. By symmetry this can only depend on | A |. Thus there are
some numbers 7, > 0, k= 0,1,...,6 such that

el i | A=k

and such that
8. 16
3 (k)wk =1. (1)
k=0 \"

Probability balance in stationarity between states of size k& and
states of size k + 1, for 0 < k <5, gives

6\ 6-k_( 6\ k+1
BT \pgep ] RTE e



This simplifies to mx = m+1. Hence myp = m; = ... = mg. Denot-
ing this common number by 7 and substituting in equation (1)

glb$
(

T
So we find that all states have equal probability in stationarity
and this is 27°.



