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Problem 1. (a) First we find the conditional pdf:

f(y1 . . . , yn|x) =
1

xn
e−

1
x

∑
i yi .

Thus, X̂MAP = 1 if

pe−
∑
i yi > (1− p)/2n.e−

1
2

∑
i yi ,

and X̂MAP = 2 otherwise.

(b) The statement is wrong. For example, X = Y = U [0, 1]!

(c) Let X ∼ N(0, 1) and Y = X with probability 1/2 and Y = −X with probabil-
ity 1/2. Clearly X and Y are not jointly Gaussian, but one can easiliy check
that Y is normal distributed.

(d) Given T10 = t, the previous arrivals are uniformly distributed between 0 and
t. Thus, the second arrival has expected value of 2t/10.

(e) Let qn be the probability of having a path to level n. Similar to HW 2, we
have

qn = 3p.qn−1 − 3p2q2n−1 + p3q3n−1.

Note that in the derivation we used the property

Pr(A∪B∪c) = Pr(A)+Pr(B)+Pr(C)−Pr(A∩B)−Pr(A∩C)−Pr(B∩C)+Pr(A∩B∩C).

Problem 2. (a) By memoryless property, E[Y2|Y1] = Y1 + 1/λA. The joint pdf is

f(y2, y1) = f(y1)f(y2|y1) = λAe
−λAy1λAe

−λA(y2−y1)1{0 ≤ y1 ≤ y2} = λ2Ae
−λAy21{0 ≤ y1 ≤ y2}.

(b) Let Nt be the number of emails sent by time t. We have

arg max
λ

Pr(N1 = 5|λ) = arg max
λ

e−λλ5/5!.

Thus, taking log of the expression and setting derivative of it to 0 we have
λML = 5 which is also intuitive.

(c) Let’s say we observe N = n. Then, we estimate λ to be n. Thus, we need to
find c such that Pr(λ ∈ (n− c, n+ c)) = 0.95. Equivalently, we can find c such
that

Pr(|n− λ| > c) = 0.05⇒ Pr(
n− λ√

λ
> c/
√
λ) ' Pr(

n− λ√
λ

> c/
√
n) = 0.025.

Thus, from the table we find that c = 2
√
n.
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(d) The sum of two independent Poisson random variables is again Poisson. The
number of emails Alice sends in [0, 1] is Poisson distributed with rate λA
and the number of emails both send in [1, 3] is Poisson distributed with rate

2λA + 2λB. So Pr(Nsum = n) = (3λA+2λB)ne−3λA−2λB

n! .

(e) By memoryless property of Poisson process, the expected time until the email
is finished is 1/λA. The expected time from the starting time, S, can be found
as follows. If Alice has not sent any emails this time is 1. If Alice has sent an
email this time is again exponential with rate λA; call it T . So S = min(1, T ).
We can find E(S) as follows.

E(S) = 1× e−λA +

∫ 1

s=0
sλAe

−λsds =
1

λA
(1− e−λA).

Therefore, the expected total typing time is 1
λA

(2− e−λA).

(f) Let A be the event that Alice sends 4 email in [0, 2] and B be the event that
a total of 10 emails are sent in [0, 2]. Then,

Pr(A|B) = Pr(A ∩B)/Pr(B)

=
(2λA)4e−2λA/4!× (λB)6e−λB/6!

(2λA + λB)10e−2λA−λB/10!

=

(
10

4

)
(

2λA
2λA + λB

)4(
λB

2λA + λB
)6.

Problem 3. (a) The transition diagram is shown in Figure 1.

Figure 1: Markov chain.

(b) π(2) = rπ(1) + qπ(3) + pπ(4).

(c) We have that Xn −Xn−1 ≥ Vn where Vn is an iid sequence with the following
PMF: Pr(V = −2) = p, Pr(Vn = −1) = q and Pr(Vn = 1) = r. Note that the
greater than or equal is because of the boundary condition, Xn = 0 or Xn = 1.
Now summing both sides of the inequality over n we have

Xn ≥ X0 +
n∑
i=1

Vi ⇒
Xn

n
≥ X0

n
+

∑n
i=1 Vi
n

.
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Thus, by law of large numbers as n tends to infinity, we have Xn
n ≥ E[V ] =

r − 2p − q > 0. Thus, the Markov chain is transient since Xn grows linearly
with n as n gets large.

Problem 4. (a) We know that L[X|Y ] = E(X)+ cov(X,Y )
var(Y ) (Y −E(Y )). We calculate

each term: E(X) = E(Y 2) = 1/3, E(Y ) = 0, var(Y ) = 1/3,

cov(X,Y ) = E(XY )− E(X)E(Y ) = E(Y 2 + Y 3 + 2ZY ) = 1/3.

So L[X|Y ] = 1/3 + Y .

(b) First, note that the pdf of Y and Z is symmetric around 0. Now by orthogo-
nality principle we have

E[X − aY 2 − bY − c] = 0⇒ 1/3− a/3− c = 0

E[XY − aY 3 − bY 2 − cY ] = 0⇒ 1/3− b/3 = 0

E[XY 2 − aY 4 − bY 3 − cY 2] = 0⇒ (1− a)× 2/5− c/3 = 0.

For the last equation we used E[Y 4] = 2
∫ 1
0 y

4dy = 2/5 and

E[XY 2] = E[Y 3 + 2ZY 2 + Y 4] = E[Y 4] = 2/5.

Problem 5. (Viterbi algorithm)

(a) Table 1 summarizes the state transition diagram.

x[n− 1] x[n] y0[n] y1[n]

0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 1

Table 1: Truth table

From this, it is clear that y0[n] = x[n− 1] + x[n] and y1[n] = x[n− 1]. Thus,
the following circuit in Figure 2 implements the given encoder.

Figure 2: An example of circuit implementing the given encoder

(b) Figure 3 shows the one stage of the trellis-diagram.

(c) Table 2 shows the output sequence.
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Figure 3: One stage of the trellis-diagram

n 0 1 2 3 4

x[n] 0 1 0 1 1

y0[n] 1 1 1 0

y1[n] 0 1 0 1

Table 2: Output sequence

(d) Figure 4 depicts the trellis-diagram. The MAP estimate of {x[n]} is (1, 0, 0, 1).

Problem 6. (EM algorithm)

(a) It is clear that the following estimates are the ML estimates.

θ̂A =
Number of heads from type-A coins

10×Number of type-A coins
=

5

6

θ̂B =
Number of heads from type-B coins

10×Number of type-B coins
=

1

3

(b)

θ̂A =

∑
zi=A

hi

10
∑

zi=A
1

=
5

6

θ̂B =

∑
zi=B

hi

10
∑

zi=B
1

=
1

3

(c) We want to maximize the likelihood of θ given y, i.e.,

L = f(y|θ) =
∑
z

f(y, z|θ) =
∑
z

f(y|z, θ)f(z|θ).

Since z is independent of θ, one can instead maximize the following quantity.

L1 =
∑
z

f(y|z, θ) =
∑
z

3∏
i=1

f(yi|zi, θ)

=
∑
z

3∏
i=1

[
1{zi = A}

(
θhiA (1− θA)3−hi

)
+ 1{zi = B}

(
θhiB (1− θB)3−hi

)]
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Figure 4: The trellis-diagram corresponding to the output sequence

Now, the summation is over all possible labels: z ∈ {A,B}3. Even though
the computation can be heavy, one can always find the MLE by optimizing
L1 over θA and θB. The scaled objective L1 is plotted in Figure 5. The MLE
estimates of (θA, θB) are (23 ,

2
3). This can be indeed seen by observing the

output sequences are symmetric, or the L1 is symmetric. Thus, θML
A = θML

B =
6
9 = 2

3 .
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Figure 5: L1

(d) (HARD EM) First, we assign labels to each coin based on the current es-
timates of θ. We first find a threshold that determines labels by solving the
following equation.(

2

3

)x(1

3

)3−x
=

(
1

3

)x(2

3

)3−x
⇒ x = 1.5

That is, we label the i-th dice as A if hi > 1.5, and we label it as B otherwise.
Thus, in the first E-step of the algorithm, we get the following labels.

z1 = B, z2 = z3 = A

In the following M-step, we update θA, θB as follows.

θ̂A =

∑
zi=A

hi

10
∑

zi=A
1

=
5

6

θ̂B =

∑
zi=B

hi

10
∑

zi=B
1

=
1

3
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(SOFT EM) First, we find ‘soft’ label of each coin using the Bayes’ rule. We
define pi as the probability of dice i being type-A. Then,

p1 =
θ1A(1− θA)2

θ1A(1− θA)2 + θ1B(1− θB)2
=

2

2 + 4
=

1

3

p2 =
θ3A(1− θA)0

θ3A(1− θA)0 + θ3B(1− θB)0
=

8

8 + 1
=

8

9

p3 =
θ2A(1− θA)1

θ2A(1− θA)1 + θ2B(1− θB)1
=

4

4 + 2
=

2

3

Then, the following M-step of the soft EM algorithm maximizes the following
objective.∑
z

log(f(y|z, θ))P (z|y, θ) ∝
∑
z

log(f(y|z, θ))P (z|y)

=
∑
i

pi log
(
θhiA (1− θA)3−hi

)
+ (1− pi) log

(
θhiB (1− θB)3−hi

)
Taking the partial derivatives of the above objective function with respect to
θA and θB give the following update equations.

θ̂A =

∑
i pi

hi
3∑

i pi
=

1+8+4
9

3+8+6
9

=
13

17
' 0.76

θ̂B =

∑
i(1− pi)

hi
3∑

i(1− pi)
=

2+1+2
9

6+1+3
9

=
1

2
= 0.5

These update equations have an intuitive interpretation: the new estimates
are weighted average of hi

3 .

(e) Both algorithms do not guarantee convergence to the MLE. (Optional) For
this problem, however, the hard EM does not converge to the MLE but the
soft EM does. Figure 6 shows how the soft EM algorithm converges from two
different initial points: (θA, θB) = (23 ,

1
3) and (θA, θB) = (0.99, 0.01). For both

cases, the algorithm converges to the MLE (θA, θB) = (23 ,
2
3).
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Figure 6: Convergence of the soft EM algorithm
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