
EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2017
Abhay Parekh and Jean Walrand December 14, 2017

Final Exam

Last Name First Name SID

Rules.

• You have 170 minutes (3:10pm - 6:00pm) to complete this exam.

• The maximum you can score is 130.

• The exam is not open book, but you are allowed one side of a sheet of handwritten notes;
calculators will be allowed. No phones.

• No form of collaboration between the students is allowed. If you are caught cheating, you
may fail the course and face disciplinary consequences.

Please read the following remarks carefully.

• Show all work to get any partial credit.

• Take into account the points that may be earned for each problem when splitting your
time between the problems.

Problem points earned out of

Problem 1 40

Problem 2 30

Problem 3 20

Problem 4 20

Problem 5 20

Problem 6 5 Bonus

Total 130 (+5 Bonus)
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Problem 1 [40] Short Answers

(a) [5] Alice and Bob play the following game. Alice tosses n identical coins, each of which
comes up Heads with probability p . All coins that come up Tails are removed and Alice flips
the remaining coins again. If there are X coins that come up Heads this time, Bob gets X
dollars. Find the pmf for X . Your answer should contain no summation signs.

A given coin makes it through two tosses with probability p2 . Thus

pX(k) =

(
n

k

)
p2k(1− p2)n−k

(b) [5] The joint distribution of two random variables X and Y is given by: pX,Y (0, 0) =
pX,Y (1, 0) = 0.2 , pX,Y (0, 1) = pX,Y (1, 1) = 0.3 . What is E[ 10

pY |X(Y |X) ] ?

E[
10

pY |X(y|x)
] =

1∑
x=0

1∑
y=0

pX,Y (x, y)
10

pX,Y (x, y)/pX(x)

=

1∑
x=0

1∑
y=0

10pX(x) =

1∑
y=0

10 = 20.

(c) [5] The Figure describes FX(x) , the CDF of X . Find E(X2) .

Figure 1: CDF

X is a mixed random variable. It is 2 with probability 1/3 and in (1, 2) with probabil-
ity 0 . It is equally likely (with probability 1/3 ) to be in [0, 1] and (2, 3] and is uniformly
distributed in both intervals. Thus

E[X2] =
4

3
+

∫ 1

0
x2

1

3
dx+

∫ 3

2
x2

1

3
dx =

4

3
+

1

9
+

19

9
=

32

9
.
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(d) [5] Email to Bob gets automatically classified and those considered to be Spam are routed
to a Spam folder. Email not classified as spam is routed to an Inbox. Regular email arrives as a
Poisson Process with rate 10 msgs/hour and Spam arrives at a rate of 20 msgs/hour. A regular
email is classified as spam with probability 0.05 and a spam email is classified as regular mail
with probability 0.01. Bob checks his Inbox after a long time and selects a message at random.
What is the probability it is spam?

Spam enters the Inbox folder as PP with rate 0.2 , while regular email enters the Inbox folder
as PP with rate 9.5 . Viewing this is a combined PP of rate 9.7 , the probability that a selected
email is Spam is 2/97 .

(e) [5] Let (X,Y ) be picked uniformly in the unit circle centered at (0, 0) . What is Q[Y |X] (the
quadratic least squares estimate of Y given X )? Hint. Recall that the quadratic least squares
estimate of Y given X is the quadratic function of X which minimizes the expected squared
distance to Y among all quadratic functions of X : E[(Y −Q[Y |X])2] ≤ E[(Y −aX2−bX−c)2]
for all a, b, c ∈ R .

One has Q[Y |X] = 0 because E[Y |X] = 0 , by symmetry.

(f) [5] Let X,Z be i.i.d. N (0, 1) and Y = X + Z . Find E[X2|Y ] .

E[X2|Y ] = E[X|Y ]2+var(X|Y ) . E[X|Y ] = L[X|Y ] = 0.5Y since X and Y are jointly Gaus-
sian. Let V = X− 0.5Y = 0.5(X−Z) . Observe that V and Y are uncorrelated, and therefore
independent since they are jointly Gaussian: E[V Y ] = 0.5E[(X−Z)(X+Z)] = 0.5E[X2−Z2] =
0 . var(X|Y ) = var(V + 0.5Y |Y ) = var(V ) = var(0.5(X − Z)) = 0.25(1 + 1) = 0.5 . Thus
E[X2|Y ] = 0.25Y 2 + 0.5 .

(g) [5] Let X ∈ {0, 1} and Y = (X + 1)Z where Z = Expo(1) is independent of X . Find
MLE[X|Y = y] .

One has fY |X [y|0] = e−y1{y ≥ 0} and fY |X [y|1] = 0.5e−0.5y1{y ≥ 0} . Hence, fY |X [y|0] = e−y

and fY |X [y|1] = 0.5e−0.5y . Thus, fY |X [y|1] > fY |X [y|0] if 0.5e−0.5y > e−y , i.e., if e0.5y > 2 , or
0.5y > ln(2) . Hence, MLE[X|Y ] = 1{Y > 2 ln(2)} .

(h) [5] Let X,Y be i.i.d. N (0, 1) . Find Q[(X + 2Y )2|Y ] .

Since Q[X|Y ] has the form aY 2 + bY + c , it obeys linearity just as expectation does. One has
Q[X2 + 2XY + 4Y 2|Y ] = Q(X2|Y ) + 2Y Q(X|Y ) + 4Y 2 . Since X and Y are independent, this
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simplifies to E(X2) + 2Y E(X) + 4Y 2 = 1 + 4Y 2 .

Problem 2 [30]

Part 1 [10].

The CTMC {Xt, t ≥ 0} has the transition diagram shown in Figure 2. Let T2 = min{t ≥ 0 |
Xt = 2} . Find E[T2|X0 = 0] .

0 1 2
22

2 2

4

Figure 2: State transition diagram for Problem 2.

The Markov chain spends an exponentially distributed time with rate 6 in state 0 , then
jumps to 1 with probability 2/6 or to 2 with probability 4/6 . When it is in state 1 , it spends
there an exponentially distributed time with rate 4 and then jumps to 0 with probability 1/2 or
to 2 with probability 1/2 . Thus, if we define β(0) = E[T2|X0 = 0] and β(1) = E[T2|X0 = 1] ,
we see that

β(0) =
1

6
+

2

6
β(1) +

4

6
× 0

β(1) =
1

4
+

1

2
β(0) +

1

2
× 0.

Combining these equations, we find

β(0) =
1

6
+

2

6
[
1

4
+

1

2
β(0)] =

1

4
+

1

6
β(0).

Hence, (5/6)β(0) = 1/4, so that β(0) = 3/10 .

Part 2 [20].

Consider the three-state CTMC in Figure 3. The number on the edge directed from state i to
state j is qi,j , i.e., the transition rate from i to j . Assume that the process is in steady state,
i.e., has its invariant distribution.

(a) [5] Find the long term time average fraction of time spent in state i for each i .

This is precisely π(i) = 1
3 for all i .

(b) [5] Given that the process is in state i at time t , find the average time after time t until
the process leaves state i , for each i .

The time the process spends on state i is exponential with rate λ(i) =
∑

j qi,j , and hence the
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Figure 3: Rate transition diagram for Problem 2-B.

expected delay is 1
λ(i) . For node 1 , this is 1

1+2 , node 2 , 1
1+4 , and node 3 , 1

2+4 .

(c) [5] Find the long term time average fraction of transitions that go into state i , for each i .

Now consider the embedded Markov chain. From rate matrix, one can compute the tran-
sition probabilities of this chain. We try to find the stationary distribution of the chain, denoted
by π̃(i) for all i . Upon solving, we obtain π̃(1) = 3

14 , π̃(2) = 5
14 , π̃(3) = 3

7 .

(d) [5] Find the steady state probability that the next state to be entered is state 1 .

In the steady state, the process is in state i with probability π(i) . Once in state 1 , the
next state is either 2 or 3 and cannot be 1 . Once in state 2 , the next state is 1 with proba-
bility 1

5 , similarly when in state 3 , the next state is 1 with probability 1
3 . Hence the steady

state probability that the next state is 1 is,

π(2)× 1

5
+ π(3)× 1

3
=

8

45
.

Problem 3 [20]

Part 1 [10].

Let X = B(p) . and assume that X ′ ∈ {0, 1} is such that P [X ′ = x′|X = x] = P (x, x′) for
x, x′ ∈ {0, 1} . Assume also that Y is such that P [Y = y|X = x,X ′ = x′] = Q(x′, y) for
x, x′ ∈ {0, 1} and y ∈ {1, . . . ,M} . Compute P [X ′ = 1|Y = y] . (Hint: Bayes’ rule.)

P [X ′ = 1|Y = y] =
P [X ′ = 1, Y = y]

P (Y = y)
.

Now,

P [X ′ = 1, Y = y] = P (X ′ = 1)P [Y = y|X ′ = 1] = [(1− p)P (0, 1) + pP (1, 1)]Q(1, y).
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Similarly,

P [X ′ = 0, Y = y] = P (X ′ = 0)P [Y = y|X ′ = 0] = [(1− p)P (0, 0) + pP (1, 0)]Q(0, y).

Consequently,

P (Y = y) = P [X ′ = 1, Y = y] + P [X ′ = 0, Y = y]

= [(1− p)P (0, 1) + pP (1, 1)]Q(1, y) + [(1− p)P (0, 0) + pP (1, 0)]Q(0, y).

Finally,

P [X ′ = 1|Y = y] =
[(1− p)P (0, 1) + pP (1, 1)]Q(1, y)

[(1− p)P (0, 1) + pP (1, 1)]Q(1, y) + [(1− p)P (0, 0) + pP (1, 0)]Q(0, y)
.

Part 2 [10].

Consider a HMC(π, P,Q) where P is on {0, 1} . That is, Xn is a Markov chain on {0, 1}
with transition matrix P and P [Yn = y|Xn = x] = Q(x, y) . Let X̂n = E[Xn|Y n] .

(a) [4] Explain clearly why one should be able to compute X̂n+1 as a function of X̂n and Yn+1 .
(Hint: Try to relate this problem to Part 1.)

This is the same problem as in Part 1 where given Y n we know that Xn = B(X̂n) .

(b) [6] Derive the equations X̂n+1 = g(X̂n, Yn+1) .

They are the same as in Part 1 where we replace p by X̂n . That is,

X̂n+1 =
[(1− X̂n)P (0, 1) + X̂nP (1, 1)]Q(1, y)

[(1− X̂n)P (0, 1) + X̂nP (1, 1)]Q(1, y) + [(1− X̂n)P (0, 0) + X̂nP (1, 0)]Q(0, y)
.

Note that this recursive filter is not linear.

Problem 4 [20]

Consider the following dynamics equations (all random variables are zero-mean scalars):

X0 ∼ N (0, σ20)

X1 = bX0 + U,

X2 = a0X0 + a1X1 +W,

where U ∼ N (0, σ2U ) , W ∼ N (0, σ2W ) , and (X0, U,W ) are independent.

(a) [4] What is the MMSE estimate of X2 given X0 ?
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One has L[X2 | X0] = a0X0 + a1L[X1 | X0] = (a0 + a1b)X0 .

(b) [4] What is the MMSE estimate of X2 given (X0, X1) ?

Note that L[X2 | X0, X1] = a0X0 + a1X1 since W is independent of (X0, X1) .

(c) [12] Now, suppose that X1 is replaced by an MMSE estimate Y1 := X1 + V , where
V ∼ N (0, σ2V ) is independent of (X0, U,W ) . What is the MMSE estimate of X2 given (X0, Y1) ?

From before, L[X2 | X0] = (a0 + a1b)X0 . The innovation is

Ỹ1 := Y1 − L[Y1 | X0] = Y1 − L[X1 + V | X0] = Y1 − bX0.

So,

L[X2 | Ỹ1] =
cov(X2, Ỹ1)

var Ỹ1
Ỹ1 =

cov((a0 + a1b)X0 + a1U +W,U + V )

var(U + V )
(Y1 − bX0)

=
a1σ

2
U

σ2U + σ2V
(Y1 − bX0).

Thus,

L[X2 | X0, Y1] =
(
a0 + a1b−

a1bσ
2
U

σ2U + σ2V

)
X0 +

a1σ
2
U

σ2U + σ2V
Y1 =

(
a0 +

a1bσ
2
V

σ2U + σ2V

)
X0 +

a1σ
2
U

σ2U + σ2V
Y1.

Comparing the answers to (b) and (c), one sees that certainty equivalence does not hold, that
is, the optimal estimate changes when the observation X1 is replaced by a noisy estimate Y1 .
To see why, we can rewrite the dynamics equations in terms of Y1 :

X0 ∼ N (0, σ20),

Y1 = bX0 + Ũ Ũ := U + V,

X2 = a0X0 + a1Y1 + W̃ W̃ := W − a1V.

The problem is that the noise variables Ũ and W̃ are no longer independent. In other words,
replacing X1 by the MMSE estimate Y1 correlates the noise associated with X0 → X1 and the
noise associated with (X0, X1)→ X2 , which changes our optimal estimate.

Problem 5 [20]

Consider two independent random variables X1 ∼ N (µ1, 1) , X2 ∼ N (µ2, 1) (where µ1, µ2 are
unknown), and we would like to detect if µ1 6= µ2 subject to the constraint that the probability
of false alarm is at most α , where α ∈ (0, 1) .
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(a) [6] You are allowed to observe a linear combination of the two random variables:

Y := aX1 + bX2.

Explain clearly how you should choose a and b .

Since we are trying to detect whether the two means are different, then a good estimator
of the difference of means is X1 −X2 (or any scalar multiple of X1 −X2 ).

Also observe that in order to control the probability of false alarm, we must know the dis-
tribution of Y under the null hypothesis (µ1 = µ2 ). However, under the null hypothesis,
aX1 + bX2 ∼ N (aµ + bµ, a2 + b2) (where µ denotes the common mean of X1 and X2 ), and
since µ is unknown, the distribution of aX1 + bX2 is known only if a = −b .

(b) [14] Now suppose the null hypothesis is µ1 = µ2 , and the alternate hypothesis is µ1 = µ2+δ ,
where δ > 0 is known. You observe Y as before. Give the Neyman-Pearson decision rule to
maximize the probability of correct detection with the constraint on the probability of false
alarm.

Under the null hypothesis, Y = X1 − X2 ∼ N (0, 2) , and under the alternate hypothesis,
Y ∼ N (δ, 2) . The likelihood ratio is

L(y) :=
f(y | 1)

f(y | 0)
=

exp(−(y − δ)2/4)

exp(−y2/4)
= exp

(δy
2
− δ2

4

)
.

The likelihood ratio is increasing so the optimal test rejects for large values of Y , i.e., declare
that µ1 = µ2 + δ if Y > c for some cutoff c . We solve for c to satisfy the constraint on
the probability of false alarm (there is no need for randomization here). Now, under the null
hypothesis, P(Y > c) = Φ(−c/

√
2) = α , so take c := −

√
2Φ−1(α) .
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Problem 6 [5 Bonus]

Thank you for taking the course! We hope you learned a lot and had fun along the way. Please
let us know how the course went for you. What did you like and what did you dislike? Do you
have any feedback for us?

We greatly appreciate your input.
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