1. Hypothesis Testing for Bernoulli Random Variables

Assume that

- If $X = 0$, then $Y \sim \text{Bernoulli}(1/4)$.
- If $X = 1$, then $Y \sim \text{Bernoulli}(3/4)$.

Using the Neyman-Pearson formulation of hypothesis testing, find the optimal randomized decision rule $r: \{0, 1\} \rightarrow \{0, 1\}$ with respect to the criterion

$$\min_{\text{randomized } r: \{0, 1\} \rightarrow \{0, 1\}} \Pr(r(Y) = 0 \mid X = 1)$$

s.t. $\Pr(r(Y) = 1 \mid X = 0) \leq \beta$,

where $\beta \in [0, 1]$ is a given upper bound on the false positive probability.

2. MAP Hypothesis Testing

Let X have prior probabilities $\Pr(X = 0) = \pi_0, \Pr(X = 1) = \pi_1$, and Y be the observed variable.

(a) Recall that the MAP (binary) hypothesis test says:

$$\hat{X}_{MAP}(y) = \arg \max_x p_{X|Y}(x|y) = \begin{cases} 1 & \text{if } \frac{p_{Y|X}(y|x)}{p_{Y|X}(y|0)} \geq \frac{\pi_0}{\pi_1} \\ 0 & \text{else} \end{cases}$$

Show that the MAP test \hat{X}_{MAP} minimizes the probability of error $P(\hat{X}(Y) \neq X)$ over all tests \hat{X}.

(b) Suppose instead of minimizing the expected probability of error, we want to minimize a weighted sum of the Type-I and Type-II error, i.e. minimize:

$$C_0 \Pr(\hat{X}(Y) = 1|X = 0) + C_1 \Pr(\hat{X}(Y) = 0|X = 1)$$

for some $C_0 \geq 0$ and $C_1 \geq 0$, what test should we use?

3. Gaussians and the MSE

Suppose you draw n i.i.d. data points $(x_1, y_1), \ldots, (x_n, y_n)$, where n is a positive integer and the true relationship is $Y = WX + \varepsilon, \varepsilon \sim N(0, \sigma^2)$. (That is, Y has a linear dependence on X, with additive Gaussian noise.) Show that finding the MLE estimate of W given the data points $\{(x_i, y_i) : i = 1, \ldots, n\}$ is equivalent to minimizing the cost function

$$J(w) = \sum_{i=1}^{n} (y_i - wx_i)^2$$