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Midterm Exam 2 (Solutions)

Last name First name SID

Name of student on your left:

Name of student on your right:

• DO NOT open the exam until instructed to do so.

• The total number of points is 110, but a score of ≥ 100 is considered perfect.

• You have 10 minutes to read this exam without writing anything and 105 minutes to
work on the problems.

• Box your final answers.

• Partial credit will not be given to answers that have no proper reasoning.

• Remember to write your name and SID on the top left corner of every sheet
of paper.

• Do not write on the reverse sides of the pages.

• All eletronic devices must be turned off. Textbooks, computers, calculators, etc. are
prohibited.

• No form of collaboration between students is allowed. If you are caught cheating, you may
fail the course and face disciplinary consequences.

• You must include explanations to receive credit.

Problem Part Max Points Problem Part Max Points

1 (a) 12 2 20

(b) 8 3 20

(c) 9 4 25

(d) 8

(e) 8

Total 110
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Problem 1. (a) (12 points) Evaluate the statements with True or False. Give brief explana-
tions in the provided boxes. Anything written outside the boxes will not be graded.

(1) A Discrete-Time Markov Chain that is not irreducible has no stationary distribution.
True or False: False
Explanation:
If the DTMC is not irreducible, it has no unique stationary distribution, but can have

many stationary distributions. For example, consider P =

[
1 0
0 1

]
. This chain is not

irreducible, but has stationary distribution
[
p 1− p

]
for any p ∈ [0, 1] .

(2) Convergence in probability implies convergence almost surely.
True or False: False
Explanation:
Consider an arrival process where the set of times is partitioned into intervals of
the form Ik = {2k, 2k + 1, . . . 2k+1 − 1} such that exactly one arrival occurs in each
Ik, k ≥ 0 . Now consider the random variable Yn which is 1 if there is an arrival at
time n , and 0 otherwise. Now, note that P (Yn = 1) = 1

2k
if n ∈ Ik . As k → ∞ ,

the size of Ik →∞ , so limn→∞ P (Yn = 0) = 1 and Yn converges to 0 in probability.
However, note that there are infinitely many occurrences of Yn which are equal to
1 , and the event {limn→∞ Yn = 0} has probability 0 , so this sequence does not
converge almost surely.

(3) If buses have been arriving to Cory Hall according to a Poisson process with rate λ
for an infinite amount of time and you arrive at 11:00AM, then the distribution of
the interarrival time from the last bus that arrived before 11:00AM to the next bus
to come is exponentially distributed with rate λ .
True or False: False
Explanation: The distribution is Erlang.
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(b) (8 points) Consider a random variable X with moment generating function (MGF)
MX(s) = a2s

2 + a1s + a0 where a1, a2 are such that a1 + a2 = 1 and E[X] = Var(X) .
Determine a0, a1, a2 .

Solution: First note that MX(0) = 1 , so a0 = 1. Now, note that E[X] = d
dsMX(s)

∣∣
s=0

=

a1 and Var(X) = E[X2] − E[X]2 = d2

ds2
MX(s)

∣∣
s=0
− a21 = 2a2 − a21 . Thus, we have:

2a2 − a21 = a1 , so a1 = 2(1 − a1) − a21 . Solving the quadratic gives a1 = −3±
√
17

2 . Note
that since a1 = E[X] = Var(X) , and the variance of a random variable is nonnegative,

we take the positive root. Thus a1 =
√
17−3
2 , and a2 = 1− a1 = 1−

√
17−3
2 .
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(c) (9 points) Alice would like to encode a 100MB file using a fountain code in order to send
the file to Bob. She divides her file into 5 20MB chunks and uses the following degree
distribution: at the i th transmission, if 1 ≤ i ≤ 5 , she uniformly at random selects i of
the five chunks and sends the mod 2 sum (or XOR) of these i chunks, while if i > 5 ,
she uniformly at random selects 1 of the five chunks and sends that chunk. Assume that
Bob uses a peeling decoder, as described in Lab 4 . Find the probability that Bob is able
to decode 3 packets after the 3 rd transmission.

Solution: Note that the maximum number of packets Bob can decode is 3 , and we
count the three cases separately.

The probability is: (
5
1

)
·
(
4
1

)
·
(
3
1

)(
5
1

)
·
(
5
2

)
·
(
5
3

) =
6

50
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(d) (8 points) You have a set of three coins: A,B, and C stacked in your hand. At each time
instant, you shuffle the coins by taking the middle coin and putting it on top of the stack
with probability 1

2 and on the bottom of the stack with probability 1
2 .

(i) (4 points) Draw the state transition diagram.

Solution: See the re-labeling below, and note the transition probabilities.

(ii) (4 points) Starting from the order A,B,C find the expected number of shuffles until
the coins are in the order C,B,A? (It is not necessary to solve numerically, just set
up the equations)

Solution: The possible states are the permutations
{(A,B,C), (B,A,C), (A,C,B), (B,C,A), (C,A,B), (C,B,A)} . For simplicity, con-
sider the following labeling:

1 C,B,A
2 B,C,A
3 B,A,C
4 A,B,C
5 A,C,B
6 C,A,B

Letting β(i) be the expected time to reach state 1 from state i , we are interested
in finding β(4) . We thus have the first step equations:

β(i) = 1 +
1

2
β(i+ 1) +

1

2
β(i− 1), i 6= 1

β(1) = 0

Where 6 + 1 wraps around to state 1 and 1 − 1 wraps around to state 6 . Solving
the system gives β(4) = 9 .
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(e) (8 points) Consider two irreducible, aperiodic Markov Chains with the same state space
such that P1, P2 give the transition matrices and π1, π2 give the stationary distributions.
We construct a process Xn, n ≥ 0 as follows. Let X0 = 1. Now, you flip a coin such
that if the coin toss results in a heads, the rest of the transitions are made according to
P1 , and if the coin toss results in a tails, the rest of the transitions are made according to
P2 . Is Xn, n ≥ 0 a Markov Chain? If so, determine the transition probabilities. If not,
provide a counterexample.

Solution: It is not a Markov Chain. Consider:

P1 =

[
1− δ1 δ1
1− δ2 δ2

]
,

[
δ1 1− δ1
δ2 1− δ2

]
Where δ1, δ2 << 1 . Now, we see that:

P (X3 = 1|X2 = 1, X1 = 1) > P (X3 = 1|X2 = 1, X1 = 2)
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Problem 2. (20 points) Empty taxis pass by a street corner at a Poisson rate of two per minute
and pick up a passenger if one is waiting there. Passengers arrive at the street corner at a
Poisson rate of one per minute and wait for a taxi only if there are less than four persons
waiting; otherwise they leave and never return. John arrives at the street corner at a given
time. Find his expected waiting time, given that he joins the queue. Assume that the process
is in steady state.

Solution:

Consider a continuous time Markov chain with states X ∈ {0, 1, 2, 3, 4} which denotes the
number of people waiting. For n = 0, 1, 2, 3 , the transitions from n to n+ 1 have rate 1, and
the transitions from n+ 1 to n have rate 2. The balance equations are then,

π(n) =
1

2
π(n− 1), n = 1, 2, 3, 4.

Using the above equations and
∑4

i=0 π(i) = 1 we find that π(i) = 2−iπ(0) and π(0) = 16/31 .
Since the expected waiting time for a new taxi is 0.5 , the expected waiting time of John given
that he joins the queue can be computed as follows.

E[T ] =
π(0)

π(0) + π(1) + π(2) + π(3)
× 0.5 +

π(1)

π(0) + π(1) + π(2) + π(3)
× 1+

π(2)

π(0) + π(1) + π(2) + π(3)
× 1.5 +

π(3)

π(0) + π(1) + π(2) + π(3)
× 2 = 26/30.
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Problem 3. (20 points) The citizens of the country USD (the United States of Drumpf) vote in
the following manner for their presidential election: if the country is liberal, then each citizen
votes for a liberal candidate with probability p and a conservative candidate with probability
1 − p , while if the country is conservative, then each citizen votes for a conservative candidate
with probability p and a liberal candidate with probability 1−p . After the election, the country
is declared to be of the party with the majority of the votes.

For part (a) , assume that p = 3
4 , and use Chebyshev’s inequality to obtain your results.

(a) (10 points) Suppose that 100 citizens of USD vote in the election and that USD is known
to be Conservative. Bound the probability that it is declared to be a Liberal country.

Solution: Let Xi be the indicator that voter i votes as a Liberal. We are interested in
bounding the quantity P (S100 ≥ 51) where S100 = X1 +X2 + · · ·+X100 . We have:

P (Sn ≥ 51) = P (X − 25 ≥ 26)

≤ P (|X − 25| ≥ 26)

≤ Var(X)

262
=

75

4 · 262
≈ 0.03

(b) (10 points) For this part, we no longer assume that p = 3
4 , and would like to estimate

the unknown p . Using the CLT, determine the number of voters necessary to determine
p within an error of 0.01 , with probability at least 0.95 .

Solution: For now, we let consider general error α and want the probability to be at
least 1− β . We are thus interested in:

P (|Sn
n
− p| ≥ α)

Note that by the CLT, Sn
n − p ≈

√
p(1−p)

n Z where Z ∼ N(0, 1) . Thus, we have:

P (|Sn
n
− p| ≥ α) ≈ P (|Z| ≥

√
n

p(1− p)
· α)

≤ P (|Z| ≥ 2α
√
n)

Now, we have:

P (|Z| ≥ 2α
√
n) = 2P (Z ≥ 2α

√
n)

= 2(1− P (Z ≤ 2α
√
n)) = β

Now, we substitute in α = 0.01 , β = 0.05 , and see that:

n = (
1.96

2 · 0.01
)2 = 982 = 9604

8



NAME: SID:

Problem 4. (25 points) In this problem, we consider a scenario where we compute a sequence
of functions, denoted by {f1, f2, . . .} , using two machines, denoted by machine 1 and 2 . For
every i and j , computing fj at machine i takes a random amount of time, denoted by Ti,j .
We assume that the Ti,j ’s are i.i.d. exponential random variables of rate 1 (per second).

We now assume that a machine is assigned an infinitely long list of functions, and that the
machine computes the functions in the list one by one.

Alice wants to compute as many distinct functions as possible in t seconds. She assigns the odd-
indexed functions (f1, f3, f5, . . .) to machine 1 and the even-indexed functions (f2, f4, f6, . . .)
to machine 2 , so that the computations performed by the two machines do not overlap. Each
machines computes the functions on its own list one by one for t seconds. We denote the
number of functions computed by machine 1 by N1(t) , and we denote the number of functions
computed by machine 2 by N2(t) .

(a) (6 points) What is the distribution of the number of distinct functions computed for t=200
seconds by machine 1 and machine 2?

Solution: Since the two lists do not overlap each other, it’s simply N1(200) +N2(200) .
Since Poisson(200 ) + Poisson(200 ) = Poisson(400 ), it’s Poisson(400 ).

(b) (6 points) Conditioned on N1(200)+N2(200) = 500 , what are the distributions of N1(200)
and N2(200) ? Are they (conditionally) independent?

Solution: Both are Binomial( 500, 12 ). They are conditionally dependent since N1(200)+
N2(200) = 500 .
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Bob proposes a new idea, as described below. Both machines are assigned the same list
of functions, say (f1, f2, . . .) , and they concurrently compute the functions in the list one
by one. As soon as one of the two machines completes a function computation, the other
machine immediately cancels its ongoing task, and both machines start working on the
next function on the list. This process is repeated for t seconds. Denote the number of
computed functions for t seconds under this strategy by B(t) .

(c) (6 points) Assume t = 200 . What is the distribution of B(t) ?

Solution: Note that inter-arrival time is now exponentially distributed with rate 2 .
Thus, it’s Poisson(400 ).
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Bob starts implementing his strategy but, unfortunately, he realizes that his system does
not support task cancellation, which is a crucial component of his strategy.

After struggling for a while, he comes up with a modified version of his strategy, which
does not require task cancellation. The new strategy is the following. Both machines are
assigned the same list of functions, say (f1, f2, . . .) . In the beginning, both machine start
concurrently computing f1 . A machine is called ‘head’ if it is computing fi and the other
one is computing fj , and i ≥ j . When a ‘head’ machine finishes a function computation,
it proceeds to the next function on the list. When a non-‘head’ machine finishes a function
computation, it skips down on the list and proceeds to the function being computed by
the head machine.

Machine	1

Machine	2

1,2 1 1,2 2

t1 t2 t3t0

f1

f1

f2 f3

f3 f4

Head 1

t4

Figure 1: Illustration of the new strategy

See Fig. 1 for illustration. For t0 ≤ t ≤ t1 , both machines are head. At t = t1 , machine
1 finishes computing f1 , and it starts computing f2 since it is a head. Similarly, at
t = t2 , machine 1 finishes computing f2 and proceeds to f3 . At t = t3 , machine 2
finishes computing f1 , and it proceeds to f3 , the function being computed by the head.
At t = t4 , machine 2 finishes computing f3 , and it proceeds to f4 , becoming a new head.

This process is repeated for t seconds.

(d) (7 points) Denote the number of computed functions for t seconds under the modified

strategy by B(t) . Find limt→∞
B(t)
t .

Solution: 4
3 .
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END OF THE EXAM.

Please check whether you have written your name and SID on every page.
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