
EE126: Probability and Random Process Solution for Midterm #2

Problem 1

Part a):
i) Since ∫ ∞

0
fX(x)dx =

∫ ∞

0
ae−µxdx = 1,

we get a = µ.

ii) The pdfs for µ = 1, 2 are shown as following:
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Part b):
i) If c = 0 then Z takes the only value d with probability 1; otherwise

fZ(z) =

{
1
|c|fY ( z−d

c ), a ≤ z−d
c ≤ b;

0, else.

So the triangle for fZ(z) scales up and narrow if |c| < 1, and scales down and flat if |c| > 1. The
plots for case c > 0 and c < 0 are shown below:

ii) From figure of fY (y) we first notice fY (y) is just a convolution of the pdfs of two uniform rvs in
[a/2, b/2]. So Y is nothing but the sum of these two independent uniform rvs; thus easy to have

E[Y ] =
a + b

2
, V ar(Y ) =

2(b− a)2

48
=

(b− a)2

24
.

Then finally we have

E[Z] = cE[Y ] + d =
c(b + a)

2
+ d,

1
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case c>0

f
Z
(z)

f
Y
(y)

2/(b−a)

a b(a+b)/2

2/(b−a)/c

ca+d cb+d(b+a)c/2+d

case c<0

f
Z
(z)

f
Y
(y)

2/(b−a)

a b(a+b)/2

2/(b−a)/|c|

ca+dcb+d (b+a)c/2+d

Note: Not to scale

and

V ar(Z) = c2V ar(Y ) =
(b− a)2c2

24
.

———————————————————-
Note: if you are instead interested in doing integral, here you go:

Easy to see E[Y ] = b+a
2 since the pdf of Y is symmetric around b+a

2 , thus

E[Z] = E[cY + d] = cE[Y ] + d =
(b + a)c

2
+ d.

To compute V ar(Z), we compute V ar(Y ) first. Notice

fY (y) =
{

2
b−a(1− 2

b−a |y − b+a
2 |), a ≤ y ≤ b;

0, else.

we get

V ar(Y ) =
∫ b

a
(y −E[Y ])2fY (y)dy

=
∫ b

a
(y − b + a

2
)2

2
b− a

(1− 2
b− a

|y − b + a

2
|)dy

(let z = y − b+a
2 ) =

2
b− a

∫ b−a
2

−b+a
2

z2(1− 2
b− a

|z|)dz

=
4

b− a

∫ b−a
2

0
z2dz − 8

(b− a)2

∫ b−a
2

0
z3dz

=
(b− a)2

24
.

Thus finally V ar(Z) = c2V ar(Y ) = c2(b−a)2

24 .
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Problem 2

a) Define U = max(X,Y ) and V = min(X,Y ). We first compute cdfs FU (u) and FV (v), then take
the derivatives to get the pdfs. For U , we have

FU (u) = P (U ≤ u)
= P (X ≤ u, Y ≤ u)
= P (X ≤ u)P (Y ≤ u) (since X and Y are independent.)
= (1− e−µXu)(1− e−µY u),

so

fU (u) =
dFU (u)

du
=

{
µXe−µXu + µY e−µY u − (µX + µY )e−(µX+µY )u, u ≥ 0;
0, else.

Similarly for V , we get

P (V ≥ v) = P (X ≥ v, Y ≥ v)
= P (X ≥ v)P (Y ≥ v) (since X and Y are independent.)
= e−(µX+µY )v,

so

fV (v) =
d(1− P (V ≥ v))

dv
=

{
(µX + µY )e−(µX+µY )v, v ≥ 0;
0, else.

b) Let Z = X + Y . Since X and Y are independent, so fZ is just the convolution of fX and fY .
So, for z > 0, we have

fZ(z) =
∫ ∞

−∞
fX(x)fY (z − x)dx

=
∫ z

0
µXe−µXxµY e−µY (z−x)dx

=

=
{ µXµY

µX−µY
(e−µY z − e−µXz) , µX 6= µY ;

µ2
X ze−µXz, else.

for z ≤ 0, easy to see fZ(z) = 0.

c)

fX|Z(x|a) =
fX,Z(x, a)

fZ(a)

=
fX,Y (x, a− x)

fZ(a)

=
fX(x)fY (a− x)

fZ(a)
(since X and Y are independent.)

=





µX−µY

1−e−(µX−µY )a e−(µX−µY )x, 0 ≤ x ≤ a, µX 6= µY ;
1
a , 0 ≤ x ≤ a, µX = µY ;
0, else.
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An interesting observation here is that if µX = µY , i.e. X and Y are iid exponentially distributed,
then any event of the form {X = x, Y = a − x} has the same probability1 (note: not necessarily
true for any distribution), thus it is not surprising that conditional on X + Y = a, X is uniformly
distributed. This observation is useful later when we deal with Poisson process.

d) We first compute P (X ≥ w|X ≥ x), then we take the derivative of FX|X≥x(w) = 1 − P (X ≥
w|X ≥ x) to get the conditional pdf.

P (X ≥ w|X ≥ x) =
P (X ≥ w, X ≥ x)

P (X ≥ x)

=

{
P (X≥w)
P (X≥x) , w ≥ x;
P (X≥x)
P (X≥x) , else.

=

{
e−µXw

e−µXx , w ≥ x;
1, else.

=
{

e−µX(w−x), w ≥ x;
1, else.

Thus

fX|X≥x() =
{

µXe−µX(w−x), w ≥ x;
0, else.

e) As we seen from part d), given the knowledge of X ≥ x, the conditional distribution of X is
exactly the same as unconditional one2, i.e. having past knowledge does not has any effect on X,
as if it is ”memoryless”.

In reality, exponential rv is often used to model the packet arrival in router, thus the memoryless
property implies no matter how long you have waited for a packet to arrive, e.g. 1 second or 100
hours, the distributions of the time you still need to wait until it finally arrives are the same.

1In general, the event {X = x, Y = a− x} has probability 0, here for convenience of the discussion, we accept the
concept and understand the probability as fX,Y (x, a− x)dxdy.

2Of course after shifting the origin from 0 to x.
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Problem 3

a) It is neither continuous nor discrete, because X takes value among [0, a], 10 and 12. One can
use, in strict sense, neither pdf nor pmf to fully describe the distribution.

b) First note FX(∞) = 1, thus b = 1− 0.2− 0.3 = 0.5, and a =
√

b ≈ 0.707.

c) Combine what we have done in class (for continuous rv) and in homework (for discrete rv), easy
to generate X from a uniform rv in [0, 1], defined as Y , as follows:

x = 12, if 0.7 ≤ y ≤ 1;
x = 10, if 0.5 ≤ y ≤ 0.7;
x =

√
y, if 0 ≤ y ≤ 0.5.

Then easy to verify X has the desire pdf as follows:

fX(x) =
{

fY (x2)/ 1
2x = 2x, if 0 ≤ x ≤ √

0.5;
0.2δ(x− 10) + 0.3δ(x− 12), else.

d) Two methods. First is to use Bern(1/2) to generate binary sequences with all the sequences
having equal probabilities. Then map the binary sequence approximately to a real number in
[0, 1], by this way we generate an uniform rv in [0, 1], then we can follow the process in part c) to
generate X. Second method is to generate a bunch Bernoulli rvs and sum them up to generate an
approximate Gaussian rv, say Z. We can also have FZ(z) since E[Z] and V ar(Z) can be computed.
Then we generate FZ(Z), which then follow uniform distribution in [0, 1]. Thus in this way we can
generate an uniform rv, and then use it to generate X.
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Problem 4

Part I
a) MAP rule is just to compare the posterior probabilities, i.e. the conditional probability of input
given observation(s):

P (X = a|Ya = ya)
X̂=a

R
X̂=−a

P (X = −a|Ya = ya)

⇔ fYa|X(ya|a)
X̂=a

R
X̂=−a

fYa|X(ya| − a) (Note X is equally likely to be ±a).

Conditional on X = ±a, Ya is just gaussian with mean ±haa and variance σ2, thus the above rule
becomes

1√
2πσ

e−
(ya−haa)2

2σ2

X̂=a

R
X̂=−a

1√
2πσ

e−
(ya+haa)2

2σ2 ;

further simplification produces:

haya

X̂=a

R
X̂=−a

0.

(Note here you might not want to remove coefficient ha because the sign of ha0 then might change
the decision from X̂ = a to X̂ = −a.)

Similar to what we did in class and homework, noticing given X = ±a, haYa follows N(±h2
aa, h2

aσ
2,

thus the error probability is

Pr(e) = Pr(e|X = a)P (X = a) + Pr(e|X = −a)P (X = −a)

= P (haYa ≤ 0|X = a)
1
2

+ P (haYa ≥ 0|X = −a)
1
2

= Q

(√
h2

aa
2

σ2

)
= Q

(√
h2

aSNR
)

.

b) Still, we just need to compare the posterior probabilities, similar to part a) we get:

fYa,Yb|X(ya, yb|a)
X̂=a

R
X̂=−a

fYa,Yb|X(ya, yb| − a),

Conditional on X = ±a, Ya and Yb are just gaussian rvs with mean being ±haa, ±hba and variance
all being σ2, thus the above rule can be further simplified to

haya + hbyb

X̂=a

R
X̂=−a

0.

The intuition here is the observation from a less strong channel play a less significant role in making
the decision.
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Noticing given X = ±a, haYa +hbYb still follows gaussian distribution N(±h2
aa±h2

ba, h2
aσ

2 +h2
bσ

2),
the probability error is

Pr(e) = Pr(e|X = a)P (X = a) + Pr(e|X = −a)P (X = −a) = Q

(√
h2

aSNR + h2
bSNR

)
.

c) From part a), we see that if the channel is in bad state, i.e. |ha| is very small, then the system
performs poorly. Thus we really want to reduce the chance of the channel in bad state, but it
is out of our control. From part b), however, we see we can play with independent channels to
achieve good performance. As long as one of the channels is good, i.e. |ha| or |hb| is large, then the
system performance will be ok. Since the chance for two independent channel to be both in bad
state is small, the chance for getting a small RECEIVING SNR h2

aa2

σ2 + h2
ba2

σ2 is small, thus we can
retain good performance most of the time. This is the diversity technique used in many wireless
communication systems. (Q: what about we have more and more receiving antennas?)

Part II:
a) Since now ha and hb is rvs following N(0, 1), then given input X, the conditional (joint or
individual) distributions of Ya and Yb do not change, i.e. they are just the same as the unconditional
ones. In other words observations Ya, Yb are independent of input X, i.e. no correlation between
input and observations. Thus observing Ya, Yb won’t give you any information about X. Thus the
system can not convey any information from sender to receiver.

b) Answer is included in a).

c) Now the conditional distributions of Y1 and Y2 changes as the input H changes, i.e. input and
observations are correlated. Thus one can expect to infer some knowledge about H by observing
Y1 and Y2. So the system should be able to convey some information from sender to receiver.

Again, the MAP rule is just to compare the conditional probability of input given observation(s):

P (H = 0|Y1a = y1a, Y2a = y2a)
Ĥ=0

R
Ĥ=1

P (H = 1|Y1a = y1a, Y2a = y2a)

⇔ fY1a,Y2a|H(y1a, y2a|0)
Ĥ=0

R
Ĥ=1

fY1a,Y2a|H(y1a, y2a|1) (Note H is equally likely to be 1 or 0).

Conditional on H = 0, Y1a ∼ N(0, 1 + σ2), Y2a ∼ N(0, σ2), and they are independent; conditional
on H = 1, Y1a ∼ N(0, σ2), Y2a ∼ N(0, 1 + σ2), and they are independent. Thus the above rule
becomes

e
− y2

1a
2(1+σ2) e−

y2
2a

2σ2

Ĥ=0

R
Ĥ=1

e−
y2
1a

2σ2 e
− y2

2a
2(1+σ2) ;

further simplification produces:

y2
1a

Ĥ=0

R
Ĥ=1

y2
2a.
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d) In the two antennas case, we have two observations each time slot, and that is the ONLY change
to the system. Also note given H, Y1a, Y1b Y2a and Y2b are just independent gaussian rvs. Follow
the similar procedure, we can have the MAP rule as

fY1a,Y2a,Y1b,Y2b|H(y1a, y2a, y1b, y2b|0)
Ĥ=0

R
Ĥ=1

fY1a,Y2a,Y1b,Y2b|H(y1a, y2a, y1b, y2b|1)

⇔ y2
1a + y2

1b

Ĥ=0

R
Ĥ=1

y2
2a + y2

2b.


