1. Laplace Prior & ℓ^1-Regularization

Suppose you draw n i.i.d. data points $(x_1, y_1), \ldots, (x_n, y_n)$, where n is a positive integer and the true relationship is $Y = WX + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. (That is, Y has a linear dependence on X, with additive Gaussian noise.) Further suppose that W has a prior distribution with density $f_W(w) = \frac{1}{2\beta} e^{-|w|/\beta}$, $\beta > 0$. (This is known as the Laplace distribution.) Show that finding the MAP estimate of W given the data points $\{(x_i, y_i) : i = 1, \ldots, n\}$ is equivalent to minimizing the cost function

$$J(w) = \sum_{i=1}^{n} (y_i - wx_i)^2 + \lambda |w|$$

(you should determine what λ is). This is interpreted as a one-dimensional ℓ^1-regularized least-squares criterion, also known as LASSO.

2. Flipping Coins and Hypothesizing

You flip a coin until you see heads. Let

$$X = \begin{cases} 1 & \text{if the bias of the coin is } q > p, \\ 0 & \text{if the bias of the coin is } p. \end{cases}$$

Find a decision rule $\hat{X}(Y)$ that maximizes $P[\hat{X} = 1 \mid X = 1]$ subject to $P[\hat{X} = 1 \mid X = 0] \leq \beta$ for $\beta \in [0, 1]$. Remember to calculate the randomization constant γ.

3. Projections

The following exercises are from the note on the Hilbert space of random variables. See the notes for some hints.

(a) Let $\mathcal{H} := \{X : X$ is a real-valued random variable with $\mathbb{E}[X^2] < \infty\}$. Prove that $(X, Y) := \mathbb{E}[XY]$ makes \mathcal{H} into a real inner product space.1

(b) Let U be a subspace of a real inner product space V and let P be the projection map onto U. Prove that P is a linear transformation.

(c) Suppose that U is finite-dimensional, $n := \dim U$, with basis $\{v_i\}_{i=1}^{n}$. Suppose that the basis is orthonormal. Show that $Py = \sum_{i=1}^{n} (y, v_i)v_i$. (Note: If we take $U = \mathbb{R}^n$ with the standard inner product, then P can be represented as a matrix in the form $P = \sum_{i=1}^{n} v_i v_i^T$.)

1To be perfectly correct, it is possible for $X \neq 0$ but $\mathbb{E}[X^2] = 0$; this occurs if $X = 0$ with probability 1. To fix this, we need to define two random variables X and Y to be equal if $P(X = Y) = 1$. In other words, we consider equivalence classes of random variables, defined by the relation \equiv. With this definition, then if $X \neq 0$ we do indeed have $\mathbb{E}[X^2] > 0$.

1
4. MMSE and Conditional Expectation

Let X, Y_1, \ldots, Y_n be square integrable random variables. The MMSE of X given (Y_1, \ldots, Y_n) is defined as the function $\phi(Y_1, \ldots, Y_n)$ which minimizes the mean square error

$$E[(X - \phi(Y_1, \ldots, Y_n))^2].$$

(a) For this part, assume $n = 1$. Show that the MMSE is precisely the conditional expectation $E[X|Y]$. Hint: expand the difference as $(X - E[X|Y] + E[X|Y] - \phi(Y))$.

(b) Argue that

$$E[(X - E[X|Y_1, \ldots, Y_n])^2] \leq E\left[\left(X - \frac{1}{n} \sum_{i=1}^{n} E[X|Y_i]\right)^2\right].$$

That is, the MMSE does better than the average of the individual estimates given each Y_i.

5. Exam Difficulties

The difficulty of an EECS 126 exam, Θ, is uniformly distributed on $[0, 100]$ (i.e. continuous distribution, not discrete), and Alice gets a score X that is uniformly distributed on $[0, \Theta]$. Alice gets her score back and wants to estimate the difficulty of the exam.

(a) What is the MLE of Θ? What is the MAP of Θ?

(b) What is the LLSE for Θ?