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1 Introduction

In this note, we will briefly introduce the subject of random graphs, also
known as Erdös-Rényi random graphs. Given a positive integer n and
a probability value p ∈ [0, 1], the G(n, p) random graph is an undirected
graph on n vertices such that each of the

(
n
2

)
edges is present in the graph

independently with probability p. When p = 0, G(n, 0) is an empty graph on
n vertices, and when p = 1, G(n, 1) is the fully connected graph on n vertices
(denoted Kn). Often, we think of p = p(n) as depending on n, and we are
usually interested in the behavior of the random graph model as n→∞.

A bit more formally, G(n, p) defines a distribution over the set of undirected
graphs on n vertices. If G ∼ G(n, p), meaning that G is a random graph with
the G(n, p) distribution, then for every fixed graph G0 on n vertices with m

edges, P(G = G0) := pm(1 − p)(
n
2)−m. In particular, if p = 1/2, then the

probability space is uniform, or in other words, every undirected graph on n
vertices is equally likely.

Here are some warm-up questions.

Question 1. What is the expected number of edges in G(n, p)?

Answer 1. There are
(
n
2

)
possible edges and the probability that any given

edge appears in the random graph is p, so by linearity of expectation, the
answer is

(
n
2

)
p.

Question 2. Pick an arbitrary vertex and let D be its degree. What is the
distribution of D? What is the expected degree?

Answer 2. Each of the n − 1 edges connected to the vertex is present
independently with probability p, so D ∼ Binomial(n − 1, p). For every
d ∈ {0, 1, . . . , n− 1}, P(D = d) =

(
n−1
d

)
pd(1− p)n−1−d, and E[D] = (n− 1)p.

Question 3. Suppose now that p(n) = λ/n for a constant λ > 0. What is
the approximate distribution of D when n is large?
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Answer 3. By the Poisson approximation to the binomial distribution, D is
approximately Poisson(λ). For every d ∈ N, P(D = d) ≈ exp(−λ)λd/d!.

Question 4. What is the probability that any given vertex is isolated?

Answer 4. All of the n− 1 edges connected to the vertex must be absent,
so the desired probability is (1− p)n−1.

2 Sharp Threshold for Connectivity

We will sketch the following result (see [1]):

Theorem 1 (Erdös-Rényi, 1961). Let

p(n) := λ
lnn

n

for a constant λ > 0.

• If λ < 1, then P{G(n, p(n)) is connected} → 0.

• If λ > 1, then P{G(n, p(n)) is connected} → 1.

In the subject of random graphs, threshold phenomena like the one above
are very common. In the above result, nudging the value of λ slightly around
the critical value of 1 causes drastically different behavior in the limit, so it
is called a sharp threshold. In such cases, examining the behavior near the
critical value leads to further insights. Here, if we take p(n) = (lnn+ c)/n
for a constant c ∈ R, then it is known that

P
{
G
(
n, p(n)

)
is connected

}
→ exp{− exp(−c)},

see [2, Theorem 7.3]. Notice that the probability increases smoothly from 0
to 1 as we vary c from −∞ to ∞.

Why is the threshold p(n) = (lnn)/n? When p(n) = 1/n, then the
expected degree of a vertex is roughly 1 so many of the vertices will be joined
together (a great deal is known about the evolution of the so-called giant
component, see e.g. [2]), but it is too likely that one of the vertices will have no
edges connected to it, making it isolated (and thus the graph is disconnected).
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Proof of Theorem 1. First, let λ < 1. If Xn denotes the number of isolated
nodes in G(n, p(n)), then it suffices to show that P(Xn > 0)→ 1, i.e., there is
an isolated node with high probability (this will then imply that the random
graph is disconnected).

• E[Xn]: Define Ii to be the indicator random variable of the event that
the ith vertex is isolated. Using linearity of expectation and symmetry,
E[Xn] =

∑n
i=1 E[Ii] =

∑n
i=1 P(node i is isolated) = nq(n), where we

define q(n) := P(a node is isolated) = [1− p(n)]n−1.

Observe that

lnE[Xn] = lnn+ (n− 1) ln{1− p(n)} ∼ lnn− n− 1

n
λ lnn→∞,

since λ < 1. Here, if f and g are two functions on N, then the notation
f(n) ∼ g(n) means f(n)/g(n)→ 1 (asymptotically, f and g have the
same behavior). The above line also uses the first-order Taylor expansion
ln(1− x) = −x+ o(x) as x→ 0.

Thus E[Xn] → ∞ which is reassuring, since we want to prove that
P(Xn > 0) → 1, but in order to prove the probability result we will
need to also look at the variance of Xn.

• varXn: We claim that

P(Xn = 0) ≤ varXn

E[Xn]2
.

Here are two ways to see this. First, from the definition of variance,

varXn = E[(Xn − E[Xn])2]

= E[Xn]2P(Xn = 0) + (1− E[Xn])2P(Xn = 1) + · · ·
≥ E[Xn]2P(Xn = 0).

The second way is to use Chebyshev’s Inequality:

P(Xn = 0) ≤ P(|Xn − E[Xn]| ≥ E[Xn]) ≤ varXn

E[Xn]2
.

The use of the variance is often called the Second Moment Method.
We must show that the ratio (varXn)/E[Xn]2 → 0. Since I1, . . . , In are
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not independent, we must use varXn = n var I1 + n(n− 1) cov(I1, I2).
Since I1 is a Bernoulli random variable, var I1 = q(n)[1− q(n)], and by
definition cov(I1, I2) = E[I1I2]− E[I1]E[I2] = E[I1I2]− q(n)2.

In order to find E[I1I2], we interpret it as a probability:

E[I1I2] = P(nodes 1, 2 are isolated).

In order for this event to happen, 2n− 3 edges must be absent:

P(nodes 1, 2 are isolated) = [1− p(n)]2n−3 =
q(n)2

1− p(n)
.

So, cov(I1, I2) = q(n)2/[1− p(n)]− q(n)2 = p(n)q(n)2/[1− p(n)], and

varXn

E[Xn]2
=
nq(n)[1− q(n)] + n(n− 1)p(n)q(n)2/[1− p(n)]

n2q(n)2

=
1− q(n)

nq(n)
+
n− 1

n

p(n)

1− p(n)
.

Since nq(n) = E[Xn]→∞, the first term tends to 0, and since p(n)→ 0,
the second term tends to 0 as well.

Next, let λ > 1. The key idea for the second claim is the following: the graph
is disconnected if and only if there exists a set of k nodes, k ∈ {1, . . . , bn/2c},
such that there is no edge connecting the k nodes to the other n− k nodes in
the graph. We can apply the union bound twice.

P
{
G
(
n, p(n)

)
is disconnected

}
= P

(bn/2c⋃
k=1

{some set of k nodes is disconnected}
)

≤
bn/2c∑
k=1

P(some set of k nodes is disconnected)

≤
bn/2c∑
k=1

(
n

k

)
P(a specific set of k nodes is disconnected)

=

bn/2c∑
k=1

(
n

k

)
[1− p(n)]k(n−k).

The rest of the proof is showing that the above summation tends to 0 via
tedious calculations, which will be given in the Appendix.
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Appendix: Tedious Calculations

Here, we will argue that

bn/2c∑
k=1

(
n

k

)
[1− p(n)]k(n−k) ≤

bn/2c∑
k=1

(
n

k

)
exp{−k(n− k)p(n)}

=

bn/2c∑
k=1

(
n

k

)
n−λk(n−k)/n

tends to 0 as n→∞. One way to do this is to break up the summation into
two parts. Since λ > 1, choose n∗ so that λ(n− n∗)/n > 1, which means we
can take n∗ = bn(1− λ−1)c. The first part of the summation is

n∗∑
k=1

(
n

k

)
n−λk(n−k)/n ≤

n∗∑
k=1

n−k[λ(n−k)/n−1] ≤
n∗∑
k=1

n−k[λ(n−n
∗)/n−1]

≤ n−[λ(n−n
∗)/n−1]

1− n−[λ(n−n∗)/n−1] → 0.

For the second part of the summation, we will use the bound(
n

k

)
≤ nk

k!
=
(n
k

)k kk
k!
≤
(n
k

)k ∞∑
j=0

kj

j!
=
(en

k

)k
.

Using this bound:

bn/2c∑
k=n∗+1

(
n

k

)
n−λk(n−k)/n ≤

bn/2c∑
k=n∗+1

(en1−λ(n−k)/n

k

)k
≤

bn/2c∑
k=n∗+1

(en1−λ(n−k)/n

n∗ + 1

)k
≤

bn/2c∑
k=n∗+1

(en−λ(n−k)/n

1− λ−1
)k
≤

bn/2c∑
k=n∗+1

( en−λ/2

1− λ−1
)k

For n sufficiently large, en−λ/2/(1− λ−1) < δ for some δ < 1.

≤
∞∑

k=n∗

δk =
δn

∗

1− δ
→ 0

since n∗ →∞.
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