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1 Introduction

In this note, we will briefly introduce the subject of random graphs, also
known as Erdos-Rényi random graphs. Given a positive integer n and
a probability value p € [0, 1], the G(n,p) random graph is an undirected
graph on n vertices such that each of the (g) edges is present in the graph
independently with probability p. When p = 0, G(n,0) is an empty graph on
n vertices, and when p = 1, G(n, 1) is the fully connected graph on n vertices
(denoted K,,). Often, we think of p = p(n) as depending on n, and we are
usually interested in the behavior of the random graph model as n — oc.

A bit more formally, G(n, p) defines a distribution over the set of undirected
graphs on n vertices. If G ~ G(n, p), meaning that G is a random graph with
the G(n, p) distribution, then for every fixed graph G on n vertices with m
edges, P(G = Gy) = p™(1 — p)(g)fm. In particular, if p = 1/2, then the
probability space is uniform, or in other words, every undirected graph on n
vertices is equally likely.

Here are some warm-up questions.

Question 1. What is the expected number of edges in G(n,p)?

n

Answer 1. There are (2) possible edges and the probability that any given
edge appears in the random graph is p, so by linearity of expectation, the
answer is (g) .

Question 2. Pick an arbitrary vertex and let D be its degree. What is the
distribution of D? What is the expected degree?

Answer 2. Each of the n — 1 edges connected to the vertex is present
independently with probability p, so D ~ Binomial(n — 1,p). For every

de{0,1,....n—1}, P(D =d) = (",")p*(1 — p)»'=% and E[D] = (n — 1)p.

Question 3. Suppose now that p(n) = A/n for a constant A > 0. What is
the approximate distribution of D when n is large?
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Answer 3. By the Poisson approximation to the binomial distribution, D is
approximately Poisson()). For every d € N, P(D = d) ~ exp(—A)\¢/d!.

Question 4. What is the probability that any given vertex is isolated?

Answer 4. All of the n — 1 edges connected to the vertex must be absent,
so the desired probability is (1 — p)"~ 1.

2 Sharp Threshold for Connectivity

We will sketch the following result (see [1]):
Theorem 1 (Erdos-Rényi, 1961). Let

Inn

p(n) = )\T

for a constant A > 0.
o If A <1, then P{G(n,p(n)) is connected} — 0.
o [fA>1, then P{G(n,p(n)) is connected} — 1.

In the subject of random graphs, threshold phenomena like the one above
are very common. In the above result, nudging the value of A slightly around
the critical value of 1 causes drastically different behavior in the limit, so it
is called a sharp threshold. In such cases, examining the behavior near the
critical value leads to further insights. Here, if we take p(n) = (Inn + ¢)/n
for a constant ¢ € R, then it is known that

P{G(n,p(n)) is connected} — exp{—exp(—c)},

see [2, Theorem 7.3]. Notice that the probability increases smoothly from 0
to 1 as we vary ¢ from —oo to oc.

Why is the threshold p(n) = (Inn)/n? When p(n) = 1/n, then the
expected degree of a vertex is roughly 1 so many of the vertices will be joined
together (a great deal is known about the evolution of the so-called giant
component, see e.g. [2]), but it is too likely that one of the vertices will have no
edges connected to it, making it isolated (and thus the graph is disconnected).



Proof of Theorem 1. First, let A < 1. If X, denotes the number of isolated
nodes in G(n, p(n)), then it suffices to show that P(X,, > 0) — 1, i.e., there is
an isolated node with high probability (this will then imply that the random
graph is disconnected).

e E[X,]: Define I; to be the indicator random variable of the event that
the ith vertex is isolated. Using linearity of expectation and symmetry,
E[X,] = > E[L] = > ! ,P(node i is isolated) = ng(n), where we
define ¢(n) := P(a node is isolated) = [1 — p(n)]"~1.

Observe that

n—1

ImE[X,|=Ihn+(n—1)In{l —p(n)} ~lnn — Alnn — oo,
since A < 1. Here, if f and g are two functions on N, then the notation
f(n) ~ g(n) means f(n)/g(n) — 1 (asymptotically, f and g have the
same behavior). The above line also uses the first-order Taylor expansion
In(l —z) =—x+o(x) as v — 0.

Thus E[X,,] — oo which is reassuring, since we want to prove that
P(X, > 0) — 1, but in order to prove the probability result we will
need to also look at the variance of X,,.

e var X,;: We claim that

Here are two ways to see this. First, from the definition of variance,
var X,, = E[(X,, — E[X,.])?]

= E[X,)’P(X, = 0) + (1 — E[X,])’P(X,, = 1) + - -~
> E[X,|2P(X, = 0).

The second way is to use Chebyshev’s Inequality:

var X,
P(X, =0) <P(|X, — E[X,]| > E[X,]) < B,

The use of the variance is often called the Second Moment Method.
We must show that the ratio (var X,,)/E[X,]* — 0. Since I1,..., I, are
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not independent, we must use var X,, = nvar I; +n(n — 1) cov(ly, ).
Since I; is a Bernoulli random variable, var I; = ¢(n)[1 — ¢(n)], and by
definition COV([l, IQ) = E{[llg] - E[[l] E[IQ] = E[[lfg] - q(n)2

In order to find E[; 5], we interpret it as a probability:
E[I,15] = P(nodes 1,2 are isolated).

In order for this event to happen, 2n — 3 edges must be absent:

2
P(nodes 1,2 are isolated) = [1 — p(n)]** % = ﬂ

1 —p(n)

So, cov(Iy, I5) = q(n)*/[1 — p(n)] — q(n)* = p(n)q(n)?/[1 — p(n)], and
var X,  ng(n)[1 — Q(n)]+n(n—1)p(n)Q(n)2/[1—p(n)]
E[X,)? n%q(n)?

_l—gm) n-1 p()
nq(n) n 1—pn)

Since ng(n) = E[X,] — oo, the first term tends to 0, and since p(n) — 0,
the second term tends to 0 as well.

Next, let A > 1. The key idea for the second claim is the following: the graph
is disconnected if and only if there exists a set of k nodes, k € {1,...,[n/2]},
such that there is no edge connecting the k£ nodes to the other n — k nodes in
the graph. We can apply the union bound twice.

P{G(n,p(n)) is disconnected }

[n/2]
= IP’( U {some set of k nodes is disconnected})
k=1
[n/2]
< Z P(some set of k nodes is disconnected)
k=1
[n/2]
< ( )P(a specific set of k nodes is disconnected)
k=1
[n/2] n
=Y ()= st
k=1

The rest of the proof is showing that the above summation tends to 0 via
tedious calculations, which will be given in the Appendix. ]
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Appendix: Tedious Calculations

Here, we will argue that

Lnf (Z> [1— p()]HH < Wf <Z> Sk =)

k=1 k=1
[n/2] n
_ —Ak(n—k)/n
> ()
k=1

tends to 0 as n — 0o. One way to do this is to break up the summation into
two parts. Since A > 1, choose n* so that A\(n —n*)/n > 1, which means we
can take n* = [n(1 — A71)]. The first part of the summation is

* * *
n

Z (Z) p A —k)/n < Zn—k[k(n—k)/n—l] < Zn—k[)\(n—n*)/n—l]

k=1 k=1 k=1
—[A(n—n*)/n—1]
" —0

= 1 — p—Amn—n*)/n—1] '

For the second part of the summation, we will use the bound

(1)) () el ()

J=0

Using this bound:

Ln/2] ln/2] 1-An—k)/n & Ln/2] 1-An—k)/n« &
M\ k)0 < <en ) < (en >
> (e S () 2 X (T

k=n*+1 k=n*+1 k=n*+1
e VLN T e ~M2 |k
en en
<Y (o) = X ()
k=n*+1 k=n*+1

For n sufficiently large, en™/2/(1 — A7!) < § for some § < 1.
< i §F = o — 0
et 1—90

since n* — oo.
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