A Geometric Derivation of the Scalar Kalman Filter

EECS 126 (UC Berkeley)

Spring 2019

1 Introduction

In this note, we develop an intuitive and geometric derivation of the scalar Kalman filter. Consider the following state space equations:

$$
\begin{align*}
x_{n} & =a x_{n-1}+v_{n}, \tag{1}\\
y_{n} & =c x_{n}+w_{n} \tag{2}
\end{align*}
$$

for each positive integer n, where $\left(v_{n}\right)_{n=1}^{\infty}$ and $\left(w_{n}\right)_{n=1}^{\infty}$ are independent sources of noise. A typical scenario to keep in mind is to have a particle with position x_{n} moving according to the updates in (1) while measurements of the particle's position are observed as in (2). We will additionally restrict our attention to the case when $|a|<1$. If this condition does not hold, it is possible to add a control term, however we will not discuss this here. Rather, our goal is to determine $L\left[x_{n} \mid y_{1}, \ldots, y_{n}\right]$.

Without loss of generality, we assume $c=1$. Indeed, if $c=0$, then the observations are not correlated with the particle's position, so this case is uninteresting. Otherwise, if $c \neq 0$, then we can rescale (2):

$$
\frac{y_{n}}{c}=x_{n}+\frac{w_{n}}{c} .
$$

Then, we can consider $\left(y_{n} / c\right)_{n=1}^{\infty}$ to be the new observations and $\left(w_{n} / c\right)_{n=1}^{\infty}$ to be the new observation noise variables.

2 Derivation of the Scalar Kalman Filter

We begin with the key observation from [1, Theorem 8.2].

Lemma 1. Assume that X, Y, Z are zero-mean random variables. Then:

$$
L[X \mid Y, Z]=L[X \mid Y]+L[X \mid Z-L[Z \mid Y]]
$$

How does Lemma 1 help us? We are interested in:

$$
\begin{aligned}
\hat{x}_{n \mid n} & :=L\left[x_{n} \mid y_{1}, \ldots, y_{n}\right] \\
& =L\left[x_{n} \mid y_{1}, \ldots, y_{n-1}\right]+L\left[x_{n} \mid y_{n}-L\left[y_{n} \mid y_{1}, \ldots, y_{n-1}\right]\right]
\end{aligned}
$$

The first quantity in the sum is the best estimate of x_{n} given the observations y_{1}, \ldots, y_{n-1}, let us denote it $\hat{x}_{n \mid n-1}$. Additionally, we call

$$
\tilde{y}_{n}=y_{n}-L\left[y_{n} \mid y_{1}, \ldots, y_{n-1}\right]
$$

the innovation in y_{n}. Thus, we have:

$$
\begin{equation*}
\hat{x}_{n \mid n}=\hat{x}_{n \mid n-1}+k_{n} \tilde{y}_{n} \tag{3}
\end{equation*}
$$

which is our first Kalman filter equation. We note that $\hat{x}_{n \mid n-1}=a \hat{x}_{n-1 \mid n-1}$, so that if we are estimating online we have access to this quantity. Additionally,

$$
\begin{aligned}
\tilde{y}_{n} & =y_{n}-L\left[y_{n} \mid y_{1}, \ldots, y_{n-1}\right]=y_{n}-L\left[x_{n}+w_{n} \mid y_{1}, \ldots, y_{n-1}\right] \\
& =y_{n}-L\left[x_{n} \mid y_{1}, \ldots, y_{n-1}\right]=y_{n}-\hat{x}_{n \mid n-1} .
\end{aligned}
$$

Thus, we see that if we can determine the quantity k_{n} (referred to as the Kalman gain), we are done. To do this, we proceed geometrically as in Figure 1. How does one arrive at such a diagram? First, we place the origin 0 and x_{n}. This does not violate any constraints as we are simply orienting ourselves and placing an arbitrary vector. Now, we would like to draw the vector corresponding to $\hat{x}_{n \mid n-1}$. The only constraint given the vectors thus far is that $\hat{x}_{n \mid n-1} \perp\left(x_{n}-\hat{x}_{n \mid n-1}\right)$ and placing $\hat{x}_{n \mid n-1}$ as in Figure 1 satisfies this. Now, we place the vector corresponding to \tilde{y}_{n}. We thus need $\tilde{y}_{n} \perp \hat{x}_{n \mid n-1}$, so we draw it as in Figure 1. Vector addition thus fixes the position of y_{n}. Additionally, we project x_{n} onto \tilde{y}_{n} to get the vector $k_{n} \tilde{y}_{n}$. We are now ready to find k_{n} geometrically.

Note that the triangles with vertices $\left(\hat{x}_{n \mid n-1}, x_{n}, y_{n}\right)$ is similar to the triangle with vertices ($\hat{x}_{n \mid n-1}, \hat{x}_{n \mid n}, x_{n}$), and thus

$$
\frac{\left\|\hat{x}_{n \mid n}-\hat{x}_{n \mid n-1}\right\|}{\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|}=\frac{\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|}{\left\|y_{n}-\hat{x}_{n \mid n-1}\right\|} .
$$

Figure 1: Geometry of the Kalman filter.

Now, since $\left\|\hat{x}_{n \mid n}-\hat{x}_{n \mid n-1}\right\|=k_{n}\left\|y_{n}-\hat{x}_{n \mid n-1}\right\|$, by rearranging one has

$$
\begin{equation*}
k_{n}=\frac{\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|^{2}}{\left\|y_{n}-\hat{x}_{n \mid n-1}\right\|^{2}}=\frac{\sigma_{n \mid n-1}^{2}}{\sigma_{n \mid n-1}^{2}+\sigma_{w}^{2}} . \tag{4}
\end{equation*}
$$

The denominator of this last equality comes from the right triangle with vertices $\left(\hat{x}_{n \mid n-1}, x_{n}, y_{n}\right)$. We know σ_{w}^{2}, so it remains to compute $\sigma_{n \mid n-1}^{2}$. In order to find this, we need another picture. ${ }^{1}$ Although we went through the construction of Figure 1 in detail, we will simply give Figure 2.

Noting that we are interested in $\sigma_{n \mid n-1}^{2}$, we examine the triangle with vertices $\left(\hat{x}_{n \mid n-1}, a x_{n-1}, x_{n}\right)$. Note that by similar triangles,

$$
\left\|a x_{n-1}-\hat{x}_{n \mid n-1}\right\|=a\left\|\Delta_{n-1 \mid n-1}\right\|
$$

and that $\left\|\Delta_{n \mid n-1}\right\|^{2}=\left\|a x_{n-1}-\hat{x}_{n \mid n-1}\right\|^{2}+\left\|v_{n-1}\right\|^{2}$, so

$$
\begin{equation*}
\sigma_{n \mid n-1}^{2}=a^{2} \sigma_{n-1 \mid n-1}^{2}+\sigma_{v}^{2} \tag{5}
\end{equation*}
$$

This implies we need one final quantity: $\sigma_{n \mid n}^{2}$. Once we have this, in each iteration, we can simply pass along $\sigma_{n \mid n}^{2}$. To find this, we again examine

[^0]

Figure 2: Geometry of the Kalman filter.

Figure 1. We note that $\sigma_{n \mid n}^{2}=\left\|x_{n}-\hat{x}_{n \mid n}\right\|^{2}$ and $\sigma_{n \mid n-1}^{2}=\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|^{2}$. By the Pythagorean Theorem, we know that

$$
\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|^{2}=\left\|\hat{x}_{n \mid n}-\hat{x}_{n \mid n-1}\right\|^{2}+\left\|x_{n}-\hat{x}_{n \mid n}\right\|^{2} .
$$

Thus,

$$
\begin{aligned}
\sigma_{n \mid n}^{2} & =\left\|x_{n}-\hat{x}_{n \mid n}\right\|^{2}=\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|^{2}-\left\|\hat{x}_{n \mid n}-\hat{x}_{n \mid n-1}\right\|^{2} \\
& =\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|^{2}\left(1-\frac{\left\|\hat{x}_{n \mid n}-\hat{x}_{n \mid n-1}\right\|^{2}}{\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|^{2}}\right) \\
& =\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|^{2}\left(1-\frac{\left\|x_{n}-\hat{x}_{n \mid n-1}\right\|^{2}}{\left\|y_{n}-\hat{x}_{n \mid n-1}\right\|^{2}}\right)=\sigma_{n \mid n-1}^{2}\left(1-k_{n}\right) .
\end{aligned}
$$

We have successfully derived the scalar Kalman filter equations in the case $c=1$. The formulas are listed here:

$$
\begin{aligned}
\hat{x}_{n \mid n} & =\hat{x}_{n \mid n-1}+k_{n} \tilde{y}_{n}, \\
\tilde{y}_{n} & =y_{n}-a \hat{x}_{n-1 \mid n-1},
\end{aligned}
$$

$$
\begin{aligned}
k_{n} & =\frac{\sigma_{n \mid n-1}^{2}}{\sigma_{n \mid n-1}^{2}+\sigma_{w}^{2}}, \\
\sigma_{n \mid n-1}^{2} & =a^{2} \sigma_{n-1 \mid n-1}^{2}+\sigma_{v}^{2}, \\
\sigma_{n \mid n}^{2} & =\sigma_{n \mid n-1}^{2}\left(1-k_{n}\right) .
\end{aligned}
$$

One key observation is that the gain k_{n} may be computed offline! Thus, in practice, one can precompute the gain, and quickly find the estimates $\hat{x}_{n \mid n}$ as observations stream in.

3 Vector Case

Let us now examine the case when our state is a vector. The state space equations in this case are:

$$
\begin{align*}
X_{n} & =A X_{n-1}+V_{n-1}, \tag{6}\\
Y_{n} & =C X_{n}+W_{n}, \tag{7}
\end{align*}
$$

where $\left(V_{i}\right)_{i=1}^{\infty},\left(W_{i}\right)_{i=1}^{\infty}$ are orthogonal, zero-mean sources of error. The vector equations are as follows:

$$
\begin{align*}
\hat{X}_{n \mid n} & =\hat{X}_{n \mid n-1}+K_{n} \tilde{Y}_{n} \tag{8}\\
\tilde{Y}_{n} & =Y_{n}-C \hat{X}_{n \mid n-1}, \tag{9}\\
K_{n} & =\Sigma_{n \mid n-1} C^{\top}\left(C \Sigma_{n \mid n-1} C^{\top}+\Sigma_{W}\right)^{-1}, \tag{10}\\
\Sigma_{n \mid n-1} & =A \Sigma_{n-1 \mid n-1} A^{\top}+\Sigma_{V}, \tag{11}\\
\Sigma_{n \mid n} & =\left(I-K_{n} C\right) \Sigma_{n \mid n-1} . \tag{12}
\end{align*}
$$

4 Conclusion

We have presented a simple derivation of the scalar Kalman filter in this note. We did not provide a proof or the update equations for the vector case in order to keep the note less cluttered. For these, please see [1, Section 8.2].

References

[1] Jean Walrand. Probability in Electrical Engineering and Computer Science: An Application-Driven Course. Quorum Books, 2014.

[^0]: ${ }^{1}$ Interestingly, it is sufficient to use one 4-D plot to draw all that we need, but this is hard (impossible?) to visualize, so we draw another 3-D plot.

