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1 Introduction

In this note, we develop an intuitive and geometric derivation of the scalar
Kalman filter. Consider the following state space equations:

xn = axn−1 + vn, (1)

yn = cxn + wn (2)

for each positive integer n, where (vn)∞n=1 and (wn)∞n=1 are independent sources
of noise. A typical scenario to keep in mind is to have a particle with position
xn moving according to the updates in (1) while measurements of the particle’s
position are observed as in (2). We will additionally restrict our attention to
the case when |a| < 1. If this condition does not hold, it is possible to add a
control term, however we will not discuss this here. Rather, our goal is to
determine L[xn | y1, . . . , yn].

Without loss of generality, we assume c = 1. Indeed, if c = 0, then the
observations are not correlated with the particle’s position, so this case is
uninteresting. Otherwise, if c 6= 0, then we can rescale (2):

yn
c

= xn +
wn

c
.

Then, we can consider (yn/c)
∞
n=1 to be the new observations and (wn/c)

∞
n=1

to be the new observation noise variables.

2 Derivation of the Scalar Kalman Filter

We begin with the key observation from [1, Theorem 8.2].
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Lemma 1. Assume that X, Y , Z are zero-mean random variables. Then:

L[X | Y, Z] = L[X | Y ] + L
[
X

∣∣ Z − L[Z | Y ]
]
.

How does Lemma 1 help us? We are interested in:

x̂n|n := L[xn | y1, . . . , yn]

= L[xn | y1, . . . , yn−1] + L
[
xn

∣∣ yn − L[yn | y1, . . . , yn−1]
]

The first quantity in the sum is the best estimate of xn given the observations
y1, . . . , yn−1, let us denote it x̂n|n−1. Additionally, we call

ỹn = yn − L[yn | y1, . . . , yn−1]

the innovation in yn. Thus, we have:

x̂n|n = x̂n|n−1 + knỹn (3)

which is our first Kalman filter equation. We note that x̂n|n−1 = ax̂n−1|n−1, so
that if we are estimating online we have access to this quantity. Additionally,

ỹn = yn − L[yn | y1, . . . , yn−1] = yn − L[xn + wn | y1, . . . , yn−1]
= yn − L[xn | y1, . . . , yn−1] = yn − x̂n|n−1.

Thus, we see that if we can determine the quantity kn (referred to as the
Kalman gain), we are done. To do this, we proceed geometrically as in
Figure 1. How does one arrive at such a diagram? First, we place the origin
0 and xn. This does not violate any constraints as we are simply orienting
ourselves and placing an arbitrary vector. Now, we would like to draw the
vector corresponding to x̂n|n−1. The only constraint given the vectors thus far
is that x̂n|n−1 ⊥ (xn − x̂n|n−1) and placing x̂n|n−1 as in Figure 1 satisfies this.
Now, we place the vector corresponding to ỹn. We thus need ỹn ⊥ x̂n|n−1,
so we draw it as in Figure 1. Vector addition thus fixes the position of yn.
Additionally, we project xn onto ỹn to get the vector knỹn. We are now ready
to find kn geometrically.

Note that the triangles with vertices (x̂n|n−1, xn, yn) is similar to the
triangle with vertices (x̂n|n−1, x̂n|n, xn), and thus

‖x̂n|n − x̂n|n−1‖
‖xn − x̂n|n−1‖

=
‖xn − x̂n|n−1‖
‖yn − x̂n|n−1‖

.
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Figure 1: Geometry of the Kalman filter.

Now, since ‖x̂n|n − x̂n|n−1‖ = kn‖yn − x̂n|n−1‖, by rearranging one has

kn =
‖xn − x̂n|n−1‖2

‖yn − x̂n|n−1‖2
=

σ2
n|n−1

σ2
n|n−1 + σ2

w

. (4)

The denominator of this last equality comes from the right triangle with
vertices (x̂n|n−1, xn, yn). We know σ2

w, so it remains to compute σ2
n|n−1. In

order to find this, we need another picture. 1 Although we went through the
construction of Figure 1 in detail, we will simply give Figure 2.

Noting that we are interested in σ2
n|n−1, we examine the triangle with

vertices (x̂n|n−1, axn−1, xn). Note that by similar triangles,

‖axn−1 − x̂n|n−1‖ = a‖∆n−1|n−1‖

and that ‖∆n|n−1‖2 = ‖axn−1 − x̂n|n−1‖2 + ‖vn−1‖2, so

σ2
n|n−1 = a2σ2

n−1|n−1 + σ2
v . (5)

This implies we need one final quantity: σ2
n|n. Once we have this, in each

iteration, we can simply pass along σ2
n|n. To find this, we again examine

1Interestingly, it is sufficient to use one 4-D plot to draw all that we need, but this is
hard (impossible?) to visualize, so we draw another 3-D plot.
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Figure 2: Geometry of the Kalman filter.

Figure 1. We note that σ2
n|n = ‖xn − x̂n|n‖2 and σ2

n|n−1 = ‖xn − x̂n|n−1‖2. By
the Pythagorean Theorem, we know that

‖xn − x̂n|n−1‖2 = ‖x̂n|n − x̂n|n−1‖2 + ‖xn − x̂n|n‖2.

Thus,

σ2
n|n = ‖xn − x̂n|n‖2 = ‖xn − x̂n|n−1‖2 − ‖x̂n|n − x̂n|n−1‖2

= ‖xn − x̂n|n−1‖2
(

1−
‖x̂n|n − x̂n|n−1‖2

‖xn − x̂n|n−1‖2
)

= ‖xn − x̂n|n−1‖2
(

1−
‖xn − x̂n|n−1‖2

‖yn − x̂n|n−1‖2
)

= σ2
n|n−1(1− kn).

We have successfully derived the scalar Kalman filter equations in the case
c = 1. The formulas are listed here:

x̂n|n = x̂n|n−1 + knỹn,

ỹn = yn − ax̂n−1|n−1,
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kn =
σ2
n|n−1

σ2
n|n−1 + σ2

w

,

σ2
n|n−1 = a2σ2

n−1|n−1 + σ2
v ,

σ2
n|n = σ2

n|n−1(1− kn).

One key observation is that the gain kn may be computed offline! Thus, in
practice, one can precompute the gain, and quickly find the estimates x̂n|n as
observations stream in.

3 Vector Case

Let us now examine the case when our state is a vector. The state space
equations in this case are:

Xn = AXn−1 + Vn−1, (6)

Yn = CXn +Wn, (7)

where (Vi)
∞
i=1, (Wi)

∞
i=1 are orthogonal, zero-mean sources of error. The vector

equations are as follows:

X̂n|n = X̂n|n−1 +KnỸn, (8)

Ỹn = Yn − CX̂n|n−1, (9)

Kn = Σn|n−1C
T(CΣn|n−1C

T + ΣW )−1, (10)

Σn|n−1 = AΣn−1|n−1A
T + ΣV , (11)

Σn|n = (I −KnC)Σn|n−1. (12)

4 Conclusion

We have presented a simple derivation of the scalar Kalman filter in this note.
We did not provide a proof or the update equations for the vector case in
order to keep the note less cluttered. For these, please see [1, Section 8.2].
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