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1 Brisk Introduction

This note is not meant to be a comprehensive treatment of Markov chains.
Instead, it is intended to provide additional explanations for topics which are
not emphasized as much in the course texts.

A sequence of random variables (Xn)n∈N is a discrete-time Markov
chain (DTMC) on the state space X if it satisfies the Markov property:
for all positive integers n and feasible1 sequences of states x0, x1, . . . , xn+1 ∈ X ,

P(Xn+1 = xn+1 | Xn = xn, . . . , X1 = x1, X0 = x0) = P (xn, xn+1),

where P (·, ·) is a set of non-negative numbers such that for all x ∈ X ,∑
y∈X P (x, y) = 1. The Markov property is often summarized by the state-

ment “the past and future are conditionally independent given the present”,
and it reflects a model in which knowledge of the current state fully determines
the distribution of the next state. Be careful however; the random variables in
a Markov chain are not in general independent, and in particular, the Markov
property does not say that Xn+1 is independent of Xn−1.

In this course, we will allow X to either be finite or countably infinite.
When X is finite, then the numbers (P (x, y), x, y ∈ X ) can be organized
into a matrix called the transition probability matrix; it has the property
that its rows sum to 1, and such matrices are called row stochastic.

In order to fully specify the joint distribution of a Markov chain, one needs
to specify the initial distribution π0, which is a probability distribution on
X representing the distribution of X0; and the transition probabilities P . The
Markov property then gives, for any positive integer n and x0, x1, . . . , xn ∈ X ,

P(X0 = x0, X1 = x1, . . . , Xn = xn) = π0(x0)P (x0, x1) · · ·P (xn−1, xn).

1The word “feasible” is here because the conditional probability is not well-defined if
P(Xn = xn, . . . , X1 = x1, X0 = x0) = 0.
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Using the rules of probability and the Markov property, the k-step transition
matrix Pk is

Pk(x, y) := P(Xk = y | X0 = x)

=
∑

x1,...,xk−1∈X

P(Xk = y,Xk−1 = xk−1, . . . , X1 = x1 | X0 = x)

=
∑

x1,...,xk−1∈X

P (x, x1)P (x1, x2) · · ·P (xk−2, xk−1)P (xk−1, y)

= P k(x, y),

where P k(x, y) is the (x, y) entry of the kth power of P . A consequence
is that Pk+` = PkP` for all k, ` ∈ N; these are known as the Chapman-
Kolmogorov equations. 2 Usually, we denote the distribution of Xn by
the row vector πn, and then the distribution of πn is given by matrix-vector
multiplication: πn = π0P

n.
3

As another consequence of the above discussion, if π0 is a distribution such
that π0 = π0P , then the chain will have the same distribution for all time:
πn = π0 for all n ∈ N. Such a distribution is called a stationary distribution
of the chain (also known as an invariant distribution). Stationarity plays
a central role in the study of Markov chains. The condition π = πP is
more explicitly written as π(x) =

∑
y∈X π(y)P (y, x) for all x ∈ X , and

these are known as the balance equations. In the finite-state case, the
balance equations correspond to a set of |X | linear equations (one of which
is redundant), along with the normalization condition

∑
x∈X π(x) = 1, and

the system can be solved via Gaussian elimination (or other methods for
calculating eigenvectors).

2This may seem like an awfully long name for a relatively simple result. It is difficult to
appreciate at this stage, but the Chapman-Kolmogorov equations are important because
characterize the structure of the transition dynamics of the chain. They are also useful for
computations.

3Notice that our convention of writing πn as a row vector means that the transition
matrix P appears on the right; this is the standard notation in probability theory, and it
carries advantages (such as P (x, y) being the probability of transitioning from x to y).
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2 Long-Run Behavior of a Countable-State

Markov Chain

This section aims to give a big picture overview of the results about the
long-run behavior of countable-state discrete-time Markov chains. The proofs
will not be given here.

2.1 Recurrence & Transience

When discussing Markov chains, the mental picture to have is that of a
particle which jumps from state to state in the state space according to the
transition probabilities of the chain, and the random variable Xn keeps track
of the location of the particle at time n.

The first key insight about Markov chains is that, while some states will
be visited by the chain over and over again, other states will only be visited
a few times and then never seen again. To formalize this, let us define some
standard notation. For each x ∈ X , the random variable Tx represents the
first time that the chain visits state x, i.e., Tx := min{n ∈ N : Xn = x} (this
is called the hitting time of state x). We will also need the random variable
T+
x := min{n ∈ Z+ : Xn = x}, which is the hitting time for state x except

that we do not let T+
x equal 0 when the chain starts at x. Also, the notations

Px and Ex mean that the chain is started at state x, that is,

Px(·) := P(· | X0 = x),

Ex[·] := E[· | X0 = x].

Then, for x, y ∈ X , we define ρx,y := Px(T+
y < ∞), the probability that

starting from state x we eventually reach state y, and ρx := ρx,x for simplicity.
Now, we say that a state x is recurrent if ρx = 1 and transient if ρx < 1.

Proposition 1. Let Nx denote the total number of visits to state x, that
is, Nx :=

∑
n∈N 1{Xn = x}. If x is recurrent, then Nx = ∞ Px-a.s., so in

particular Ex[Nx] =∞. If x is transient, then Ex[Nx] <∞; in fact,

Ex[Nx] =
ρx

1− ρx
<∞.

In particular, Nx <∞ Px-a.s. 4

4Suppose that X is non-negative. If X takes on the value ∞ with positive probability
p, then E[X] ≥ ∞ · p =∞. Thus, if E[X] <∞, then X <∞ with probability 1.
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In the above result, the notation Px-a.s. means that the event occurs
almost surely when the chain is started from state x, i.e., Px(·) = 1.

The above result formalizes the intuition about recurrent and transient
states: starting from a recurrent state x, then x will be visited infinitely many
times by the chain. Starting from a transient state x, the chain will only visit
x finitely many times, and then never return.

What is an example of a recurrent state or a transient state? We will
shortly describe the main classification result, which gives an easy way of
figuring out which states are transient and which states are recurrent by
looking at the transition diagram of the Markov chain. The transition
diagram is the directed graph associated with the Markov chain, where the
vertices are the states in X , and the edge (x, y) is drawn in the transition
diagram if and only if P (x, y) > 0. However, we can treat a few examples
from definitions alone.

Example 1. Consider the two-state chain:

0 1

1/2

1/2 1

Here it is clear that once we are in state 1, we will never leave 1, whereas if
we are in state 0, then eventually we will leave state 0 and move to state 1.
Therefore state 0 is transient and state 1 is recurrent.

Example 2. Consider the simple random walk which is “reflected” at 0:

0 1 2 · · ·

1/2

1/2

1/2

1/2

1/2

1/2

1/2

We claim that state 0 is recurrent. If we start in state 0, then with probability
1/2 we will return to state 0 immediately; otherwise, we will move to state 1,
which yields the equation

ρ0 =
1

2
+

1

2
ρ1,0.
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Now, once we are in state 1, then with probability 1/2 we will reach state 0;
otherwise, with probability 1/2 we will reach state 2, so

ρ1,0 =
1

2
+

1

2
ρ2,0.

However, in order to reach state 0 from 2, we must reach 1 from 2 and 0 from
1, so ρ2,0 = ρ2,1ρ1,0. By symmetry, ρ2,1 = ρ1,0, so ρ2,0 = ρ21,0. Substituting this
into the above equations yields

ρ1,0 =
1

2
+

1

2
ρ21,0

and this is seen to imply ρ1,0 = 1; thus, ρ0 = 1 as well. Already we have
arrived at a result that is not immediately obvious: the reflected random walk
will visit the origin infinitely often (instead of “drifting off to ∞”).

Proposition 2. A finite-state DTMC has at least one recurrent state.

After all, the chain has to spend its time somewhere, and if it visits each
of its finitely many state finitely many times, then where else could it go?
However, this is not true for infinite-state Markov chains.

Example 3. Consider the following chain:

0 1 2 · · ·1 1 1

Clearly the chain drifts off to ∞ and every state is transient.

2.2 Classification of States

We say that state x communicates with state y if ρx,y > 0 and ρy,x > 0.
In words, it is possible (through a sequence of transitions with non-zero
probability) to reach state y from state x, and it is also possible to reach state
x from state y. A communicating class is a maximal set of states which
communicate with each other. In graph terminology, a communicating class
is a strongly connected component (SCC) in the transition diagram of the
chain. The set of communicating classes of the chain partition the state space,
and this concept will allow us to take a Markov chain with a complicated
structure and decompose it into smaller chains.
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We say that a Markov chain is irreducible if it consists of only a single
communicating class. An alternate way to describe irreducibility is that for
any pair of states x and y, it is possible to reach x from y and vice versa.

We say that a property of a state is a class property if the property is
necessarily shared by all members of a communicating class. In this case,
then the property is not really a property of the state, but rather a property
of the entire communicating class. The key classification result is:

Theorem 1 (Classification of States). Recurrence and transience are class
properties.

We can now speak of recurrent and transient classes, rather than restricting
ourselves to recurrent and transient states. In the case when the Markov chain
is irreducible, then there is only one communicating class, so we can speak
of the entire Markov chain as being recurrent or transient. The following
observations are helpful for classifying the states of a Markov chain.

• From Proposition 2 it follows that every finite-state irreducible chain is
recurrent. More generally, any finite communicating class which has no
edges leaving the communicating class (the class is closed) is recurrent.

• If a state has an edge which leads outside of the communicating class
in which it belongs, then the state is transient.

• If a state is recurrent, then any state it can reach is also recurrent
(“recurrence is contagious”).

Given the above observations, see if you can formulate an algorithm for
classifying all of the states of a finite-state Markov chain given only the
transition diagram.

Example 4. Let us classify all of the states in the examples above.

• Example 1. The communicating classes are {0} and {1}. Since {0} has
an edge to {1}, it is transient, and since {1} is closed it is recurrent.

• Example 2. The chain is irreducible, and since we have shown that 0 is
recurrent, it follows that the entire chain is recurrent.

• Example 3. The communicating classes are {i} for i ∈ N and each class
is transient.
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2.3 Positive Recurrence & Null Recurrence

In this section we address the existence and uniqueness of the stationary
distribution.

First of all, to understand the terminology, a sequence of random variables
(Xn)n∈N is called stationary if for all positive integers k, n, and all events
A1, . . . , An, then

P(X1 ∈ A1, . . . , Xn ∈ An) = P(Xk+1 ∈ A1, . . . , Xk+n ∈ An).

In other words, the distribution of (X1, . . . , Xn) is the same as the joint dis-
tribution after we shift the time index by k to (Xk+1, . . . , Xk+n). Stationarity
is important because many stochastic processes that have a stationary regime
will, under suitable conditions, converge to stationarity in some sense. Conse-
quently, stationarity is a powerful simplifying assumption that is justified for
systems that have been running for a long period of time.

5

For a Markov chain (Xn)n∈N, convince yourself that (Xn)n∈N is stationary
if and only if the chain is started from its stationary distribution (so the
terminology is consistent).

We will start with a crucial interpretation of the stationary distribution.
We will focus on the irreducible case.

Theorem 2. Suppose that the Markov chain is irreducible with a stationary
distribution π. Then, for each x ∈ X ,

π(x) =
1

Ex[T+
x ]
.

Understanding this theorem carefully sheds light on much of the conver-
gence theory, so let us take the time to sketch the ideas involved. Markov
chains are a generalization of i.i.d. random variables because they introduce
a dependence structure, so they are more difficult to study than i.i.d. random
variables. The key to analyzing Markov chains is to look for the underlying
i.i.d. structure hidden within the Markov chain.

The Markov property says that once the current state is known, then the
past history of the chain is irrelevant from the point of view of predicting the

5For example, it turns out that the AEP still holds if we replace the i.i.d. assumption
with the assumption of stationarity (along with another property called ergodicity which
we will not discuss).
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future. Therefore, if at two different points in time we are in state x, then
at both times the future of the Markov chain has the same distribution. We
can formalize the idea by defining random variables Tx(k) to be the time at
which we visit state x for the kth time after 0, where Tx(0) = 0. Start the
chain at state x. Then, the blocks

(X0, . . . , XTx(1)−1), (XTx(1), . . . , XTx(2)−1), (XTx(2), . . . , XTx(3)−1), . . .

are i.i.d. To interpret this, note that each block above starts at state x, so
each block can be viewed as an excursion which leaves x and eventually makes
its way back to x; when the chain reaches x again, a new block begins. Notice
that in order to make sense of this idea, the state x must be recurrent, or else
there is a change that the excursion outside of x will never end.

Since the blocks are i.i.d., then any function applied to the blocks will
produce i.i.d. random variables. So, let τ1, τ2, τ3, . . . denote the length of
the blocks. They are i.i.d., with mean E[τ1] = Ex[T+

x ], so by the SLLN,
n−1

∑n
i=1 τi → Ex[T+

x ]. In the time τ1 + · · ·+ τn we have visited x exactly n
times, so n−1

∑n
i=1 τi is the total time divided by the number of visits to x.

Alternatively, if we fix a time t, then the total time divided by the number of
visits to x is t/(

∑t−1
i=0 1{Xi = x}), so we can expect that

t∑t−1
i=0 1{Xi = x}

→ Ex[T+
x ]

or

1

t

t−1∑
i=0

1{Xi = x} → 1

Ex[T+
x ]
.

Now, we may take expectations.
6 to get t−1

∑t−1
i=0 P(Xi = x) → 1/Ex[T+

x ]. If we start the chain at the
stationary distribution π, then P(Xi = x) = π(x) for all i ∈ N, so we get
π(x) = 1/Ex[T+

x ].
We already observed that the argument does not make sense if x is

transient, and also the argument does not make sense if Ex[T+
x ] =∞. If x is

a transient state, then intuitively it cannot support any stationary probability
mass because all of the probability mass in x must eventually flow out of

6In order to do this, we must use the Dominated Convergence Theorem, which is valid
because t−1

∑t−1
i=0 1{Xi = x} is bounded above by 1 for all t ∈ N.
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x and never return. If Ex[T+
x ] = ∞, then yet another phenomenon occurs:

although the state x may be recurrent, so x is visited infinitely many times,
the times between successive visits to x are so long that x cannot support
any stationary probability mass either!

We define x to be positive recurrent if x is recurrent and Ex[T+
x ] <∞;

otherwise, we say x is null recurrent if x is recurrent and Ex[T+
x ] =∞.

Theorem 3. Positive recurrence and null recurrence are class properties.

Our picture of the classification of states is now more subtle. We have
transient states and recurrent states, and then recurrent states further separate
into positive recurrent and null recurrent states. Null recurrence is a new
phenomenon that only comes up in the infinite-state case.

Proposition 3. Any finite-state irreducible chain is positive recurrent.

Intuitively, null recurrence is a subtle phenomenon which lies at the
boundary between positive recurrence and transience.

We are now ready to state the formal theorems.

Theorem 4. An irreducible positive recurrent Markov chain has a unique
stationary distribution. In fact, the converse is true too: an irreducible Markov
chain is positive recurrent if and only if a stationary distribution exists.

The above result says that “positive recurrent” and “stationary distri-
bution” are practically synonymous. What does it mean when a stationary
distribution does not exist? It means that if µ is a non-negative solution
to the balance equations, µ = µP , then it is impossible to normalize it:∑

x∈X µ(x) = 0 or
∑

x∈X µ(x) =∞ (this is one way to show that the chain is
not positive recurrent). Otherwise, if

∑
x∈X µ(x) is a positive finite constant

c, then π := c−1µ is the stationary distribution.

Theorem 5. For an irreducible positive recurrent Markov chain with sta-
tionary distribution π, for each state x, the fraction of time spent in state x,
n−1

∑n−1
i=0 1{Xi = x}, converges a.s. as n→∞ to π(x).

Finally, we will say what happens when the chain is not irreducible. Using
the classification of states, we can separate the chain into communicating
classes, and the transient and null recurrent classes can support no stationary
mass (so if there are no positive recurrent classes, there are no stationary
distributions). If there is more than one positive recurrent class, then each one
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can be viewed as an irreducible positive recurrent Markov chain with its own
stationary distribution. Then, any convex combination of these individual
stationary distributions will yield a stationary distribution for the overall
chain, so in this case the stationary distribution is not unique.

Example 5. Consider the reflected random walk where the probability of
moving forwards is p ∈ (0, 1).

0 1 2 · · ·

p

1− p

1− p

p

1− p

p

1− p

The chain is irreducible, and it can be classified as:

• positive recurrent, when p < 1/2;

• null recurrent, when p = 1/2;

• transient, when p > 1/2.

In the first case, p < 1/2, check that π(k) := (1 − ρ)ρk for k ∈ N, where
ρ := p/(1− p), is the stationary distribution of the chain.

7

The existence of the stationary distribution confirms positive recurrence.
In the second case, p = 1/2, we already showed in Example 2 that the

chain is recurrent. We can check by hand that E0[T
+
0 ] =∞. Indeed, using

the first-step equations,

E1[T
+
0 ] = 1 +

1

2
E0[T0] +

1

2
E2[T

+
0 ]

= 1 + 0 +
1

2
E2[T

+
0 ]

Observe that E2[T
+
0 ] is the expected time to travel two steps to the left, which

by symmetry is E2[T
+
1 ] + E1[T

+
0 ] = 2E1[T

+
0 ], so

E1[T
+
0 ] = 1 + E1[T

+
0 ]

7To check this, it is easiest to verify the detailed balance conditions.
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This equation can only be satisfied if E1[T
+
0 ] =∞. Then, since

E0[T
+
0 ] = 1 +

1

2
E1[T

+
0 ]

it follows that E0[T
+
0 ] =∞ as well, so the chain is null recurrent.

In the third case, p > 1/2, intuitively the chain drifts more towards the
right than to the left and it is therefore transient. Here is an argument using
the SLLN, which is trickier than the previous two arguments. For each n ∈ N,
let Yn := −1 if the chain takes a transition to the “left” on the nth transition,
and let Yn := +1 if the chain takes a transition to the “right” on the nth
transition (so Y1, Y2, Y3, . . . are i.i.d. with P(Y1 = 1) = p = 1− P(Y1 = −1)).
Then, Xn = 0 only if

∑n
i=1 Yi ≤ 0, which occurs if and only if n−1

∑n
i=1 Yi ≤ 0.

However, by the SLLN, n−1
∑n

i=1 Yi
a.s.−−−→

n→∞
E[Y1] > 0, which means that

n−1
∑n

i=1 Yi ≤ 0 can only happen finitely many times, a.s. Therefore, Xn = 0
can only happen finitely many times a.s., but we know that any recurrent
state is visited infinitely many times, so 0 is transient (and thus the entire
chain is transient).

Example 6. Consider the following chain:

1 2 3 · · ·1/2

1/2

1/3

2/3

1/4

3/4

In other words, P (i, 1) = 1− P (i, i+ 1) = 1/(i+ 1) for all positive integers
i. The chain is irreducible and the probability of never returning to state 1
starting from state 1 is

lim
n→∞

1

2
· 2

3
· 3

4
· · · n

n+ 1
= lim

n→∞

1

n+ 1
= 0,

so the chain is recurrent. It is null recurrent because the expected time to
reach state 1 starting from state 1 is

E1[T
+
1 ] = 1 +

1

2
E2[T

+
1 ] = 1 +

1

2

(
1 +

2

3
E3[T

+
1 ]
)

= 1 +
1

2
+

1

3
E3[T

+
1 ] = · · ·

= 1 +
1

2
+

1

3
+ · · · =∞.

11



2.4 Aperiodicity & Convergence

Suppose that we have an irreducible positive recurrent chain with stationary
distribution π. In this section we are interested in the question of when
πn → π, in the sense that πn(x)→ π(x) for each x ∈ X as n→∞, regardless
of the initial distribution π0. Clearly, if we start with π0 = π, then πn → π,
but we want to find assumptions on the chain under which the initial condition
π0 of the chain does not matter in the long run.

The assumption that we need here is aperiodicity. To build up to it, the
period of a state x is d(x) := gcd{n ∈ Z+ : P n(x, x) > 0}. To parse this
definition, look at the set {n ∈ Z+ : P n(x, x) > 0}: this is the set of times
at which it is possible to return to state x starting from state x. Then, we
look at the greatest common divisor of this set. In particular, if a state has a
self-loop, then its period is 1.

Theorem 6. The period of a state is a class property.
8

So, for an irreducible positive recurrent chain, the period of every state is
the same. We may now define the chain to be aperiodic if its period is 1,
otherwise it is periodic.

The following theorem summarizes what the period of the Markov chain
has to say about its behavior, and it provides us with valuable intuition about
periodic Markov chains.

Theorem 7. Suppose that a irreducible recurrent Markov chain has period d.

1. The state space X can be partitioned into d classes X1, . . . ,Xd which
flow in a cyclic fashion into each other: states in Xi only transition to
states in Xi+1 mod d.

2. The dth power of the transition matrix, P d, has d closed communicating
classes, and P d is an irreducible transition probability matrix on each
of the classes X1, . . . ,Xd.

3. If the chain is aperiodic, then for sufficiently large n, P n has only
positive entries (the matrix is called regular).

For the aperiodic case we have:

8It can be awkward to define the period of a transient state, but the period is mainly a
useful concept for irreducible recurrent chains anyway.
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Theorem 8 (Convergence Theorem). For an irreducible positive recurrent
aperiodic chain with stationary distribution π, then πn → π.

The proof method used to prove the convergence result is known as
coupling, and using the idea of coupling can lead to quantitative results
about the rate of convergence, which in turn leads to the analysis of the
performance of algorithms. One famous result in this area is the result that
seven riffle shuffles suffices to produce a well-shuffled deck of cards.

2.5 A Word on Linear Algebra

The theory of finite-state Markov chains can be viewed either probabilistically,
or through the eyes of linear algebra. We will not explore the latter viewpoint
in much detail, but here we will briefly explain the connection.

The stationary distribution is a non-negative left eigenvector of eigenvalue
1 for the transition probability matrix. The main theorem from the linear
algebra perspective is called the Perron-Frobenius Theorem. One of its
conclusions is that all of the eigenvalues are bounded in magnitude by 1.
Therefore, we would like to argue that the stationary distribution corresponds
to the dominant eigenvalue, and as we take n→∞, the other eigenvalues will
go to 0. When all other eigenvalues are strictly less than 1 in magnitude and
the eigenspace corresponding to the stationary distribution has dimension
one, which is true for the irreducible aperiodic chain, then this argument
provides a proof of the convergence result.

In the aperiodic case, then there are multiple eigenvalues of the transition
matrix with magnitude 1 (they are the dth roots of unity for period d). This
is the essential barrier to convergence for periodic Markov chains.
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