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1 Reversibility

Consider an irreducible Markov chain (Xn)n∈N on the finite state space X
with transition probability matrix P . When is it the case that the Markov
chain “looks the same” regardless of whether we run it forwards in time or
backwards in time? Formally, fix a positive integer N and define the reversed
chain Yn := XN−n for n = 0, 1, . . . , N . Then, (Y0, . . . , YN) = (XN , . . . , X0),
so (Yn)Nn=0 is the sequence of states we observe if, starting at time N , we run
the original Markov chain “backwards”. To justify the name “reversed chain”,
we prove:

Theorem 1. If the irreducible Markov chain (Xn)n∈N is started from the
stationary distribution π, then the reversed chain (Yn)Nn=0 is an irreducible
Markov chain with transition probabilities P̂ (x, y) = π(y)P (y, x)/π(x) for
x, y ∈ X . The stationary distribution for the reversed chain is also π.

Proof. For a positive integer k < N and a feasible sequence of states
x0, x1, . . . , xk, xk+1 ∈ X ,

P(Yk+1 = xk+1 | Yk = xk, . . . , Y1 = x1, Y0 = x0)

= P(XN−k−1 = xk+1 | XN−k = xk, . . . , XN−1 = x1, XN = x0)

(now use the “backwards Markov property”)

= P(XN−k−1 = xk+1 | XN−k = xk) =
P(XN−k−1 = xk+1, XN−k = xk)

P(XN−k = xk)

=
π(xk+1)P (xk+1, xk)

π(xk)
.

Therefore, (Yn)Nn=0 is a Markov chain and the transition probabilities are
P̂ (x, y) := π(y)P (y, x)/π(x) for x, y ∈ X . Irreducibility of (Yn)Nn=0 follows
from irreducibility of the original chain (you are encouraged to think about
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why this is true). Finally, since P(Xn = x) = π(x) for all n ∈ N (since the
original chain is started from stationarity), then P(Yn = x) = π(x) for all
n = 0, 1, . . . , N , which implies that π is the stationary distribution for the
reversed chain.

Now, to answer the question we posed above: when does the reversed
chain look the same as the original chain? We need the transition probabilities
to be the same in both chains, i.e., P̂ (x, y) = P (x, y) for all x, y ∈ X , or
equivalently,

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ X . (1)

A Markov chain whose stationary distribution π and transition probability
matrix P satisfy (1) is called reversible.

Perhaps surprisingly, the notion of reversibility is more than just a mathe-
matical curiosity. Reversibility finds applications in the design of queueing
systems and sampling algorithms; we will soon discuss the latter in more
detail. We give an example of the former:

Example 1. Consider a discrete-time queue: at each n ∈ N, a customer
arrives with probability p (this is called a Bernoulli process), and if there
are any customers in the queue, then one of the customers is served with
probability q. The arrivals and services are all assumed to be mutually
independent. Then, the length of the queue is a Markov chain, and in fact it
turns out to be reversible. Notice though that when we look at the queue
backwards in time, then the customer departures become arrivals, which
implies that the departure process is also a Bernoulli process!

1.1 Detailed Balance

The equations (1) are also called the detailed balance equations. In
general, the condition for stationarity is π(y) =

∑
x∈X π(x)P (x, y) for all

y ∈ X . Imagine that a total mass of π(y) sits at state y, and when the
Markov chain undergoes a transition, the total mass of π(y) leaves state
y and is divided up among the neighbors of y according to the transition
probabilities P (y, ·). The balance equations then express the global condition
that the total mass leaving state y equals the sum of the mass entering y.
On the other hand, the detailed balance equations reflect a local condition
that the mass exchanged along each edge (x, y) is balanced; this is a stronger
condition than global balance.
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Exercise 1. Consider an irreducible Markov chain on the finite state space
X with transition probability matrix P .

1. Suppose that P̃ is another transition probability matrix of the same
dimensions as P (the rows sum to 1). Show that if π is a probability
distribution on X which satisfies π(x)P (x, y) = π(y)P̃ (y, x) for all
x, y ∈ X , then π is the stationary distribution and P̃ is the transition
probability matrix of the reversed chain.

2. In particular, if π satisfies the detailed balance equations (1), then π is
the stationary distribution.

To summarize the situation, the detailed balance equations are sufficient
for stationarity but not necessary ; there exist Markov chains whose stationary
distributions do not satisfy detailed balance. 1 However, it is useful to try
detailed balance first, since solving (1) is usually easier than solving the
general balance equations. To take full advantage of the power of this tool, it
is helpful to know the following result:

Exercise 2. The graph associated with a Markov chain is formed by taking
the transition diagram of the chain, forgetting the directions of all of the
edges, removing multiple edges, and removing self-loops. If the graph of a
finite-state irreducible Markov chain is a tree, then the stationary distribution
of the Markov chain satisfies detailed balance.

In particular, Markov chains which look like a line satisfy detailed balance:
for example, a random walk which can only move to the immediate left or to
the immediate right. This includes the queue in Example 1.

Example 2 (Metropolis-Hastings). Often in applications, we encounter prob-
ability distributions that are computationally intractable, but if we can design
algorithms which produce samples from the desired distribution, then we can
infer important properties about the distribution (such as the expectation
or the mode). Monte Carlo Markov Chain (MCMC) refers to class of
algorithms which produce samples from a distribution by designing a Markov
chain where the given distribution is stationary for the chain. After perform-
ing transitions until the chain reaches stationarity, we can then take samples
from the chain to approximate the given distribution.

1If you are interested, necessary and sufficient conditions for detailed balance are given
by the Kolmogorov cycle condition.
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An important MCMC algorithm, called the Metropolis-Hastings al-
gorithm, only requires knowledge about the desired distribution up to a
constant factor. (The constant factor is important—it is often the reason why
the probability distribution is computationally intractable!) Crucially, the
Metropolis-Hastings chain satisfies detailed balance.
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