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• You have 5 minutes to read the exam and 175 minutes to complete this exam.

• The maximum you can score is 134, but 100 points is considered perfect.

• The exam is not open book, but you are allowed to consult the cheat sheet that we provide.
No calculators or phones. No form of collaboration between the students is allowed. If
you are caught cheating, you may fail the course and face disciplinary consequences.

• Show all work to get any partial credit.

• Take into account the points that may be earned for each problem when splitting your
time between the problems.

Problem points earned out of

Problem 1 45

Problem 2 20

Problem 3 10

Problem 4 12

Problem 5 7

Problem 6 20

Problem 7 20

Total 100 (+34)
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Problem 1: Answer these questions briefly but clearly. [45]

1. Maximum Variance [5]
Let X be a random variable that takes value between 0 and c, where c is positive-valued
(i.e. P(0 ≤ X ≤ c) = 1). What is the maximum value of the variance of X? Provide an
example which achieves this bound. You do not need to prove that your bound (if correct)
is tight.

The bound is achieved by X =

{
c,w.p. 1/2

0,w.p. 1/2

The value of the variance in this case is c2/4

Proof: Let µ = E[X]. Then var(X) = E[X2]− µ2 =
∑
x2p(x)− µ2 ≤

∑
c · xp(x)− µ2 =

cµ− µ2 = µ(c− µ). This is maximized by µ = c/2, giving an upper bound of c2/4.

2. Min and Max of Uniform Distribution [5] Let X and Y be independent random
variables distributed as Uniform[0, 1]. Let U = min{X,Y } and V = max{X,Y }. Find
cov(U, V ).

cov(U, V ) = E[UV ]−E[U ]E[V ] = E[XY ]−1/3·2/3 = E[X]E[Y ]−2/9 = 1/4−2/9 = 1/36

3. Correlation Coefficients [5]
Let X,Y, Z be jointly Gaussian zero–mean random variables such that X is conditionally
independent of Z given Y . Given that the correlation coefficients of (X,Y ) and (Y,Z) are
ρ1 and ρ2, find the correlation coefficient of (X,Z). Hint: The answer is in a fairly simple
form; use the law of iterated expectation.

E[XZ] = E[E[XZ|Y ]] = E[E[X|Y ]E[Z|Y ]] = E[L[X|Y ]L[Z|Y ]]

= E[
cov(X,Y )

σ2Y
Y · cov(Y,Z)

σ2Y
Y ] =

cov(X,Y )

σ2Y

cov(Y,Z)

σ2Y
E[Y 2] =

cov(X,Y )cov(Y,Z)

σ2Y

ρ =
cov(X,Z)

σXσZ
=
cov(X,Y )

σXσY

cov(Y, Z)

σY σZ
= ρ1ρ2

(Note: This result is true even when X,Y,Z are non-zero mean. You would have to handle
a few more expectations.)
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4. Short Questions (Justify, no points for only answer.) [6]

(a) True or False? For Zero Mean Jointly Gaussian RVs X,Y and Z, if L(X|Y, Z) =
L(X|Y ) + L(X|Z), then Y and Z are independent RVs.

False, when Y and Z are correlated but X is independent of Y and Z. In this
case, L[X|Y,Z] = 0 = L[X|Y ] + L[X|Z]

Full credit was given for answering True, with the reasoning that Y and Z are orthog-
onal as the innovation is 0, implying they are uncorrelated and hence independent

(b) If X is a Poisson Process of rate λ and has N arrivals in (0, T ), what is the joint
distribution of the first N arrival times?

f(t1, . . . , tN |N(T ) = N) = N !
TN 1{0 ≤ t1 ≤ · · · ≤ tN ≤ T}
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5. CTMC [7]
Consider the CTMC shown below. Write out the transition matrix, find the stationary
distribution and then find the corresponding DTMC which has the same stationary dis-
tribution as this chain.

A B

C

6

6 2

2

The rate matrix for this CTMC is Q =

−6 0 6
2 −4 2
6 0 −6


For the stationary distribution, we solve πQ = 0 and

∑
i π(i) = 1 which gives us π =

[1/2 0 1/2] (this can also be seen from the symmetry of states A and C and the tran-
sience of state B).

A B

C

1

1
1
3

1
3

1
3

Multiple answers. The DTMC above has the same stationary distribution.
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6. Deterministic Poisson Splitting [5]

Customers arrive at a store in a Poisson process, N(t), (t > 0), with rate λ. There are
two queues, Q1 and Q2. Instead of random assignment to the queues, the first customer
is deterministically assigned to Q1, the next is assigned to Q2, and so on; that is, the
customers are assigned alternately to the two queues. Are the arrival processes to the
individual queues Poisson? (If yes, provide the rate of the process. If no, show why not.)

The arrival process to an individual queue is not a Poisson process. Since every other
arrival comes to a queue, the interarrival times for an individual queue is the sum of two
Exp(λ) random variables, i.e. it is Erlang of order 2.

7. Petersburg Revisited [7]

Recall the St. Petersburg “paradox” example from lecture. Formally, let X be a random
variable representing the payoff from a random game such that for i = 1, ..., P (X = 2i) =
1
2i

. In lecture, we showed that E[X] is infinite, but this does not seem to be a reasonable
way to model the “fair price” of the game. Here, we explore a different approach. Now,
let Xk be i.i.d. realizations of this game at time step k. At each time step, according to
some fixed c ∈ R, define

Sn =

n∏
i=1

Xi

c

(a) What is the distribution of log2Xi ? (Specify parameters, if any. No justification
needed.)

P (log2Xi = x) = P (Xi = 2x) = 1
2x . So log2Xi ∼ Geom(12)

(b) Show that E[log2(Xi)] = 2, ∀i. If needed, use without proof that
∑∞

i=1
i
2i

= 2.

The expectation of a geometric r.v. is 1/p. This follows immediately.

(c) Show that limn→∞ log2(Sn) is either −∞ or∞, w.p. 1 according to if c < c∗ or c > c∗

for some fixed c∗. What is this value c∗?

limn→∞ log2(Sn) = limn→∞
∑n

1 log2(Xi)− log2 c = limn→∞ n(
∑
Xi

n − log2 c).

Using the Strong Law of Large Numbers, the above limit is 0, with probability 1
when log2 c = E[log2X] = 2 =⇒ c∗ = 4.

We then have limn→∞ log2(Sn) =


∞, c < 4

0, c = 4

−∞, c > 4
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8. Independent Sum Entropy [5]

Let X1, ..., Xn be independent random variables. Let Y =
∑n

i=1Xi.

(a) Argue that ∀i, H(Y ) ≥ H(Xi).

Intuitive argument : Let Z = X1 + · · · + Xi−1 + Xi+1 + · · · + Xn. Y = Xi + Z
and since Xi and Z are independent, we can treat Z as noise. Independent noise
increases the uncertainty (the number of values and how the probability is spread
over these), which entropy is a measure of.

Proof:

H(X1 +X2 + ...+Xn) ≥ H(X1 +X2 + ...+Xn|X1, ...Xi−1, Xi+1...Xn)

= H(Xi|X1, ..., Xi−1, Xi+1..., Xn)

= H(Xi)

Step 1 is true because the conditional entropy of a random variable conditioned on
others is no more than the entropy of the random variable.
Step 2 is true because conditioned on X1, ..., Xi−1, Xi+1..., Xn, X1 +X2 + ...+Xn =
c+Xi and adding a constant does not change entropy.
Step 3 is because Xi is independent of all the others.

Note: H(Y ) = H(
∑n

i=1Xi) =
∑n

i=1H(Xi) is not true. The sum identity is for
joint entropy, i.e. H(X1, . . . , Xn) =

∑n
i=1H(Xi).

Independence is very important. Suppose

X1, X2 =

{
(1, 0) w.p. 1

2

(0, 1) w.p. 1
2

X1, X2 are individually B(12), so H(X1) = 1. But X1 +X2 is 1 w.p. 1, so it’s entropy
is 0.

(b) Give an example where H(Y ) =
∑n

i=1H(Xi).

An example of equality is when all Xis are constants. In this case both sides are
0.

Another example is when

Xi =

{
0 w.p. 1

2

2i−1 w.p. 1
2

Each individual Xi has entropy 1. Furthermore
∑
Xi generates all 2n bitstrings, and

since they’re uniformly probable, it’s entropy is n.
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Problem 2: Random Graphs and Markov Chains [20]

Assume N ≥ 3 is a fixed positive integer and G0 is a graph on N vertices {1, 2, . . . , N} with no
edges (empty graph). At each time step n ≥ 1, starting from the graph Gn−1, we pick a pair
(i, j), 1 ≤ i < j ≤ N uniformly at random among the

(
N
2

)
such pairs. Then, with probability

1− p, we do nothing, and with probability p, we alter the edge between vertices i and j; that is,
if there is an edge between i and j, we remove it and if there is not an edge, we place an edge.
Here, p ∈ (0, 1) is fixed. Let Gn be the resulting graph. We continue this process inductively,
i.e. we generate G1 from G0, then G2 from G1, and so on.

1. Argue that (Gn : n ≥ 0) is a Markov Chain. What is the state space? What is the size of
this state space? What are the transition probabilities?

Note that Gn+1 is constructed only based on Gn. Hence, conditioned on Gn, Gn+1

is independent from G0, . . . , Gn−1. This means that (Gn : n ≥ 0) is a Markov Chain. The

state space is the set of all simple graphs on n vertices, which has size 2(N2 ). If P (G,G′) =
P(Gn+1 = G′|Gn = G) denotes the transition probability, we have P (G,G) = 1− p (since
we do nothing with probability 1− p), and P (G,G′) = p/

(
N
2

)
if G′ differs from G in only

one edge.

2. Classify this chain in terms of its periodicity, reducibility, and whether it is transient,
positive recurrent or null recurrent (Justify your answers for full credit).

Since there is a loop at each state with probability 1 − p and p ∈ (0, 1), the chain is
aperiodic. Moreover, we can reach any graph G′ starting with any graph G with nonzero
probability. The reason is that we can simply go over the edges in G one by one and alter
them if necessary so that we modify G into G′. Therefore, the chain is irreducible and all
the states are recurrent.
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3. What are the stationary distribution(s) of this Markov Chain? [Hint: Show that the
Erdős–Rényi distribution G(N, q) with an appropriate value of q is the stationary distri-
bution.]

Note that since the chain is irreducible, it has a unique stationary distribution. We
claim that the Erdős–Rényi distribution G(N, q) with an appropriate value of q is the
stationary distribution. Under this distribution, we have

π(G) = qnG(1− q)M−nG ,

where nG is the number of edges in G and M is a shorthand for
(
N
2

)
. We should pick q

to guarantee that π(G) =
∑

G′ P (G′, G)π(G′). As we have seen before, P (G′, G) 6= 0 only
when either G = G′, in which case P (G′, G) = 1−p, or G′ differs from G in only one edge,
in which case P (G′, G) = p/M . If G′ is such that it differs from G in one of the nG edges
of G, we have

π(G′) = qnG−1(1− q)M−nG+1 =
1− q
q

π(G).

On the other hand, if G′ differs from G in one of the M − nG edges that are not present
in G, we have

π(G′) = qnG+1(1− q)M−nG−1 =
q

1− q
π(G).

Therefore, we must have

π(G) = (1− p)π(G) + nG
p

M

1− q
q

π(G) + (M − nG)
p

M

q

1− q
π(G).

We see that this identity is satisfied with q = 1/2. Hence, the Erdős–Rényi distribution
G(N, 1/2) is the unique stationary distribution of this chain.

4. Assume that N = 3. Let T be the first time such that GT is the complete graph (the
graph on 3 vertices with all the 3 possible edges present). Find E(T ).

Let aG be the expected number of iterations it takes to reach the complete graph starting
from G. We write first step equations for aG. For a graph G, let nG denote the number
of edges in G. Moreover, let AG denote the set of graphs which differ from G in only one
edge. Then, the first step equations are:

aG = 1 + (1− p)aG +
∑

G′∈AG

p

M
aG′ ,

and aH = 0, where H denotes the complete graph. Note that there are two types of graphs
in AG: those with nG − 1 many edges and those with nG + 1 many edges. Due to the
symmetry in choosing the edge to alter at each step, aG only depends on nG. Hence, let
bk for 0 ≤ k ≤M = 3 denote aG for graphs G with nG = k. We know that b3 = 0 and we
are interested in b0. Rewriting the first step equations in terms of bk, we get

b0 = 1 + (1− p)b0 + pb1

bk = 1 + (1− p)bk +
kp

3
bk−1 +

(
1− k

3

)
pbk+1 for 1 ≤ k ≤ 2
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From the first identity

b0 =
1

p
+ b1.

For k = 1, b1 = 1 + (1− p)b1 + p
3b0 + 2p

3 b2. Substituting b0 = b1 + 1/p and simplifying, we
get

b1 = b2 +
2

p
.

For k = 2, we get b2 = 1 + (1− p)b2 + 2p
3 b1. Substituting b1 = b2 + 2/p and solving for b2,

we get b2 = 7/p. Using this, we get b1 = 9/p and

b0 =
1

p
+ b1 =

10

p
.

Thereby, E(T ) = 10/p.
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Problem 3: MAP with Gaussians [10]

A disease has 2 strains, 0 and 1, which occur with prior probability p0 and p1 = 1−p0 respectively.
For both parts of this problem, you are allowed to leave your answer in terms of Φ(x), the CDF
of the standard normal distribution.

1. A noisy test is developed to find which strain is present for patients with the disease. Let
X ∈ {0, 1} be the random variable which denotes the strain. The output of the test is a
random variable Y1, such that Y1 = 5− 4X +Z1, where Z1 ∼ N (0, σ2) and is independent
of the strain X. Give a MAP decision rule to output X̂, your best guess for X, given Y1,
and compute P(X̂ 6= 0|X = 0).

This is a case of binary detection with additive gaussian noise. The MAP rule is,

X̂MAP = 1 if
P (Y1|X = 1)P (X = 1)

P (Y1|X = 0)P (X = 0)

otherwise, X̂MAP = 0. Since P (X = 0) = p0 and P (X = 1) = p1, the above mentioned
rule can be simplified as the following,

X̂MAP = 1 if y1 ≤ 3− σ2

4
log(p0/p1) (1)

otherwise X̂MAP = 0. Let y∗ be the threshold on y1, we have

y∗ = 3− σ2

4
log(p0/p1)

Then,

P (X̂MLE = 1|X = 0) = P (y1 < y∗|X = 0) = 1−Q(
y∗ − 5

σ
)

P (X̂MLE = 0|X = 1) = P (y1 ≥ y∗|X = 1) = Q(
y∗ − 1

σ
)

2. A medical researcher proposes a new measurement procedure: he observes Y1 as done
previously, and in addition, “creates” a new measurement, Y2 = Y1 + Z2. Assume Z2 ∼
N (0, σ2) is independent of X and Z1. Now, find the MAP rule in terms of the joint
observation (y1, y2) and compute P(X̂ 6= 0|X = 0).

Note that Y2 is simlpy Y1 plus noise and the noise component is independent of X and
Y1. Thus Y2 conditioned on Y1 and X is simply N (Y1, σ

2) which does not depend on X.
Thus Y1 is sufficient and Y2 is irrelevant. So the decision rule stays the same, so are the
error probabilities.
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Problem 4: Hypothesis Testing with Gaussians [12]
For this problem also, you may leave your answer in terms of the Guassian CDF Φ(x).

1. We are told that a random variable X is either N (0, 1) (null hypothesis) or N (10, 1) (al-
ternate hypothesis). We want the probability of false alarm to be no more than 2.5%.
What is the Neyman-Pearson optimal test? What is the probability of correct detection
for this threshold?

Let H be the random variable of the hypothesis which can take the values H1, the alter-
nate hypothesis, and H0, the null hypothesis. We set up the likelihood ratio to determine
how to set our threshold:

L(x) =
fX|H1

(x|H = H1)

fX|H0
(x|H = H0)

=

1√
2π
e−(x−10)

2/2

1√
2π
e−x2/2

= e10x−50

We see that the likelihood is monotonically increasing in x, so we will look for a threshold
τ such that Ĥ = H1 if x ≥ τ . For this we use the threshold on the probability of false
alarm.

P (Ĥ = H1|H = H0) = 0.025 =⇒ P (X ≥ τ |H = H0) = 0.025

Conditioned on H = H0 we know X ∼ N (0, 1) so to achieve the bound we set τ = 1.96.

To find the probability of correct detection we just plug in our value of τ . Let Z ∼ N (0, 1).

P (Ĥ = H1|H = H1) = P (X ≥ 1.96|H = H1)

= P (X ≥ 1.96|X ∼ N(10, 1))

= P (Z ≥ 1.96− 10)

= Φ(8.04)

2. Now, we are told that a random variable Y is either N (0, 1) (null hypothesis) or N (0, 2)
(alternate hypothesis). We want the probability of false alarm to be no more than 5%.
What is the Neyman-Pearson optimal test? What is the probability of correct detection
for this threshold?

Let H be the random variable of the hypothesis which can take the values H1, the
alternate hypothesis, and H0, the null hypothesis. We set up the likelihood ratio to deter-
mine how to set our threshold:

L(y) =
fY |H1

(y|H = H1)

fY |H0
(y|H = H0

=

1√
2π2

e−y
2/(2∗2)

1√
2π
e−y2/2

=
1√
2
e

y2

4

We see that the likelihood is monotonically increasing in |y|, so we will look for a threshold
τ such that Ĥ = H1 if |y| ≥ τ . For this we use the threshold on the probability of false
alarm.

P (Ĥ = H1|H = H0) = 0.05 =⇒ P (|X| ≥ τ |H = H0) = 0.05

Conditioned on H = H0 we know Y ∼ N (0, 1) so to achieve the bound we set τ = 1.96.
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To find the probability of correct detection we just plug in our value of τ . Let Z ∼ N (0, 1).

P (Ĥ = H1|H = H1) = P (|Y | ≥ 1.96|H = H1)

= P (|Y | ≥ 1.96|Y ∼ N(0, 2))

= P (|Z| ≥ 1.96√
2

)

= 2Φ(−1.96√
2

)
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Problem 5: Gaussian Product CLT [7]

Let X1, ...., Xn
i.i.d.∼ Lognormal(µ, σ). Let Yk := (Πk

i=1Xi)
1/k. Recall: if X is log-normally

distributed, then ln(X) is N (µ, σ).

1. Find E[ln(Yk)].

E[ln(Yk)] = E[ 1k
∑k

i=1 lnXi] = k
kµ = µ

2. Find a lower bound on n such that P(| ln(Yn)− E[ln(Yn)]| > 0.01) < 0.05. You may leave
your answer in terms of Φ(x), the normal CDF.

var(ln(Yn)) = var( 1
n

∑
lnXi) = σ2

n .

P(| ln(Yn)− E[ln(Yn)]| > 0.01) = P(|N (0,
σ2

n
)| > 0.01)

= P(|N (0, 1)| > 0.01

√
n

σ
) < 0.05

=⇒ 2(1− Φ(0.01

√
n

σ
)) < 0.05

=⇒ 0.01

√
n

σ
> 1.96

=⇒ n > 1962σ2
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Problem 6: LLSE and Kalman Filter [20]

Consider a sensor network comprising n sensors that take noisy measurements of a temperature
variable X as follows: Yi = X +Wi, where X ∼ N (0, 10) and Wi’s are i.i.d. N (0, 1) that model
the noise in the system.

1. Let X̂LLSE = α1Y1 +α2Y2 + . . .+αnYn. Find αi for i = {1, . . . , n}. (Hint: Do it for n = 2
first and then generalize).

Solution 1:
By symmetry, each αi must be equal (α1 = α2 = . . . αn = α). So X̂LLSE = α(nX+

∑
iWi).

To calculate α, note that X−X̂LLSE must be orthogonal to each Yi. Choosing Y1 we have,

0 = E[(X − α(nX +
∑
i

Wi))(X +W1)]

= E[X2]− αnE[X2]− α
��

���
���:0

E[(
∑

Wi)X]

+���
��:0

E[XW1]− αn���
��:0

E[XW1]− αE[(
∑

Wi)W1]

= E[X2]− αnE[X2]− αE[W 2
1 ]

= 10− (10n+ 1)α

=⇒ α =
10

10n+ 1

Solution 2:
If you calculated X̂1|1 and X̂2|2 below you may have guessed the form. This can then be
shown by induction using the Kalman filter equations.

2. Suppose n = 2. I want to form L[X|Y1, Y2] in an online fashion by first considering Y1 and
then Y2 as follows:

L[X|Y1, Y2] = L[X|Y1] + L[X|Ỹ2].
What is Ỹ2? Draw a geometric picture relating Y1, Y2 and Ỹ2.

The innovation Ỹ2 = Y2 − L[Y2|Y1] = Y2 − cov(X+W2,X+W1)
var(X+W1)

Y1 = Y2 − 10
11Y1

Y1

Ỹ2 Y2

L[Y2|Y1]

cos θ = ρ(Y2, Y1) = 10/11

3. Now I want to estimate X recursively by taking the measurements Y1, Y2, . . . , Yn in an
online fashion using a Kalman Filter based approach. Note that the state-space equations
degenerate to:

Xn = Xn−1,
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Yn = Xn +Wn

We will use the usual notation seen in lecture. X̂n|n is the best estimate of Xn given

Y1, Y2, . . . , Yn. X̂n|n−1 is the best estimate of Xn given Y1, Y2, ...Yn−1 and σ2n|n = E((Xn−
X̂n|n)2), etc.

Suppose I initialize X̂1|0 = 0 and σ21|0 = 10 (i.e, variance of X) in the Kalman equations:

X̂n|n = X̂n|n−1 + kn(Yn − X̂n|n−1)

kn =
σ2n|n−1

σ2n|n−1 + σ2w

σ2n|n = σ2n|n−1(1− kn)

(a) What are X̂1|1, σ
2
1|1, X̂2|2, and σ22|2?

Using a), X1|1 = 10
11Y1 and X2|2 = 10

21(Y1 + Y2).

σ2n|n = E[(X − α(nX +
∑
i

Wi))
2] = E[(X(1− αn)− α

∑
i

Wi)
2]

= (1− αn)2var(X) + α2var(
∑

Wi)− 2
���

���
��:0

cov(X,
∑
i

Wi)

= nα2 + 10(1− nα)2 =
100n

(10n+ 1)2
+ 10

1

(10n+ 1)2
=

10

10n+ 1

So σ21|1 = 10
11 and σ22|2 = 10

21

(b) In the limit as n→∞, what are kn and σ2n|n?

Since Xn = Xn−1, σ
2
n|n−1 = σ2n−1|n−1. So kn =

10
10(n−1)+1

10
10(n−1)+1

+1
= 10

10n+1 . We can see

that in the limit as n→∞, both kn and σn|n go to 0
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Problem 7: HMMs and EM [20]

1. There are two identical-looking coins A and B whose biases (probability of Heads) are
θA = 0.4 and θB = 0.8 respectively. Let Xk be the coin at time step k. A Markov Chain
with transition probabilities given below describes the coin-picking process: P (Xk+1 =
A|Xk = B) = 0.2, P (Xk+1 = B|Xk = A) = 0.3 for k = {0, 1. . . . , }. Now, let the initial
state X0 be A. At each time step, we observe the result of flipping the current coin
(without knowing which coin it was). The observed sequence of tosses is H,T,T.

(a) What is the most likely sequence of coin labels picked?

(A,A,A). We are given that the state is A at time step 0, so the first coin in the
sequence is trivially A. Both the transition probability and the tails probability are
individually maximized when the next state is A for the subsequent states in the
sequence, so the second and third coins are also A

(b) What is the most likely coin label corresponding to the second toss? Is it consistent
with the answer in (a)? Does it need to be? Explain.

The most likely coin label corresponding to the second toss is the coin with the
higher probability of tails, i.e, A. It is consistent with a). However, this does not
need to be consistent with a) as we are calculating the maximum likelihood estimate
of a single toss and not the maximum likelihood estimate of the full sequence of tosses.
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2. Now suppose that you do not know the true biases of the two coins and want to estimate
them. At each time step, you pick one of the two coins equally at random and toss it
once and observe whether it is Heads or Tails. You then replace the coin and repeat the
experiment 5 times. Suppose you observe H, T, T, H, H.

(a) Using the Hard EM algorithm with initial guess θA = 0.4, θB = 0.8, what will be your
converged estimates of the biases of the coins?

First iteration - since we flip only one coin each experiment, the coin assignment
is just B if you see a head and A if T. The MLE estimates based on just one flip are

1 and 0 for θ̂B
(1)

and θ̂A
(1)

respectively. We see that convergence has been reached
since on the next iteration all heads are once again assigned to B and tails to A giving

the same estimates of 0 and 1 for θ̂A
(2)

and θ̂B
(2)

. The estimates with Hard E.M. are
thus A yields tails w.p. 1 and B yields heads w.p. 1.

(b) Now you use the Soft EM algorithm with the same initial guesses. What will be the
estimates for θA, θB after one iteration?

E-step:
First we calculate P (A|H) and P (A|T ).

P (A|H) =
P (H|A)P (A)

P (H|A)P (A) + P (H|B)P (B
=

0.4

0.4 + 0.8
= 1/3

Similarly, we get 3/4 for P (A|T ), 2/3 for P (B|H) and 1/4 for P (B|T ). Weighting
the observations with these probabilities, we have 3 · 1/3 = 1H and 2 · 3/4 = 1.5T s
for A and 3 · 2/3 = 2Hs and 2 · 1/4 = 1/2T for B.

M-step:
Finding the MLE, we have the following estimates after one iteration -

θ̂A
(1)

=
1

1 + 1.5
= 0.4

θ̂B
(1)

=
2

2 + 1
2

= 0.8
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