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1 Assorted Problems [62]

(a) Tossing Coins [5]

A fair coin is tossed eleven times. What is the probability that the sequence of outcomes
is a palindrome (i.e. a sequence that is the same when reversed)?

Since the coin is fair, each sequence of 11 flips is equally likely to happen (with
probability 1

211
). We now count the number of palindromes. Note that if we know

the first 5 outcomes, we also know the outcomes of tosses 7 through 11. Note that
the sixth coin toss isn’t restricted. So the number of permutations is 25 · 2 = 26.
Therefore the probability is 1

25
.

(b) Sketchy Bounds [5]

As we derived in the homework, the element-wise expectation and variance of Î = STS

where S is a d× n Gaussian sketch matrix (i.e. Sij
iid∼ N (0, 1

d
)) are

E[Îij] =

{
1, if i = j

0, otherwise
,Var[Îij] =

{
2/d, if i = j

1/d, otherwise

We want to reduce noise by increasing the dimension d of the sketching matrix. Using
Chebyshev’s inequality, find a lower bound on d in terms of ε such that for the diagonal
entry Îii, we have the bound P (Îii ∈ [1− ε, 1 + ε]) ≥ 3

4
.

P (|Îii − 1| > ε) ≤ Var(Îii)

ε2
≤ 1

4
1

4
≥ 2

dε2

d ≥ 8

ε2
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(c) Exponential Shifting [5]

Let X, Y be distributed independently as Exponential(λ),Exponential(µ). What is the
probability that X is less than Y by at least some fixed amount c ≥ 0?

If Y − c ≤ 0, then P (X < Y − c | Y − c ≤ 0) = 0. This means we only need
to consider the other case where Y − c > 0. We can use the memorylessness of
exponentials and observe that P (X < Y − c | Y − c > 0) = λ

λ+µ
. Combining the

above gives

P (X < Y − c) = P (X < Y − c | Y − c > 0) · P (Y − c > 0)

=
λ

λ+ µ
e−µc

Alternatively, we use the same setup from homework.

P (X < Y − c) =

∫ ∞
c

P (X < y − c | Y = y) · fY (y) dy

=

∫ ∞
c

(1− e−λ(y−c))µe−µy dy

= e−µc − µe−µc

λ+ µ
=

λ

λ+ µ
e−µc

(d) Undirected Markov Chain [5]

Consider a Markov chain defined on the following undirected graph. At each time step,
you pick one of your neighbors (you cannot pick yourself) uniformly at random to move
to. What is the stationary distribution probability of the shaded state?

For undirected graphs,

π(i) =
d(i)∑
j d(j)

=
d(i)

2E

where E is the number of edges in the graph. Since the shaded state has 3 neighbors
and there are 8 edges, the answer is 3

16
.
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(e) Leaving [6]

Suppose people enter a waiting room according to a Poisson Process with rate λ. Upon
a new arrival, each person in the waiting room before the arrival leaves independently
with probability p < 1. At time 0, the room is empty. At time T , what is the expected
number of people in the waiting room?

Hint: Condition on the number of arrivals, N . The MGF of a Poisson random variable
Z with rate λ is MZ(s) = eλ(e

s−1)

Given that there were N arrivals, the first person who arrived is still in the room
with probability (1− p)N−1, and the second person is in the room with probability
(1 − p)N−2, and so on with the N ’th person being in the room with probability 1.
Then by linearity of expectation on indicators, the expected number of people in the

room is
∑N−1

i=0 (1− p)i = 1−(1−p)N
p

.

At time T , the number of arrivals N is distributed as Poisson(λT ). Thus, we are

interested in calculating E[1−(1−p)
N

p
].

1

p
E[1− (1− p)N ] =

1

p
(1− E[elog(1−p)N ])

=
1

p
(1−MN(log(1− p)))

=
1− exp(λT (elog(1−p) − 1))

p

=
1− e−λpT

p

(f) Messages [5]

Justin and Hong are continuously sending messages to you. Each of their messages arrive
according to a Poisson Process, and their rates are λ1 and λ2, respectively. What is the
expected amount of time, T , until you see a message from Justin directly followed by a
message from Hong?

Example: For example you will record HJH if you get an arrival from Hong at time Ta,
then from Justin at time Tb, then from Hong at time Tc, at which point you will have
seen the pattern. Here, T = Tc.

Starting from time 0, we know that it will take time 1
λ1

until we see a message from
Justin. Afterwards, additional arrivals from Justin before seeing an arrival from
Hong doesn’t matter. It will take 1

λ2
time to see the arrival from Hong. Thus, the

answer is 1
λ1

+ 1
λ2

.

4



(g) Revisiting ER [5]

Consider a set of N vertices of a graph. Each vertex i is associated with a Xi ∼ N (0, 1)
RV, all i.i.d. Suppose we draw an edge between vertex i and vertex j if Xi +Xj > c for
some constant c.

(i) What is the probability that a particular edge exists? Your answers to the following
questions may be expressed in terms of Φ, the standard Gaussian CDF.

P (Xi +Xj > c) = P (N (0, 2) > c) = P (N (0, 1) < − c√
2

) = Φ(−c/
√

2)

(ii) Is this an ER random graph? Justify your answer.

© True © False

No. Because the distribution of Xi changes if we know that Xi+Xj > c, which
means that the edges do not appear independently of each other.

(h) Really Random Binomial MAP [5]

Suppose you have a binomial variable X ∼ Binomial(n, U). If you know U is distributed
as follows

U =


0 w.p 0.2

0.5 w.p 0.6

1 w.p 0.2

what is the MAP estimate of U given X.

We want to choose maximize P (X = x | U = u) · P (U = u) =
(
n
x

)
ux(1 − u)n−x ·

P (U = u). Let us look at different choices of u and x. We have to handle the
edge cases where x = 0, n separately. The table below computes the posterior
P (X = x | U = u) · P (U = u).

x = 0 0 < x < n x = n

u=0 0.2 0 0
u=0.5 0.5n · 0.6 0.5n · 0.6 0.5n · 0.6
u=1 0 0 0.2

Based on this, we should choose U = 0 when x = 0 and n > 1, U = 0.5 when
0 < x < n or n = 1, and U = n when x = n and n > 1. For n = 1, we still want to
guess U = 0.5 since 0.2 < 0.5 · 0.6 = 0.3.
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(i) Two Sided Hypothesis Test [5]

Suppose we observe n samples X1, X2, . . . , Xn where Xi ∼ N (0, σ2). We know

X =

{
0 if σ = σ0

1 if σ = σ1

where σ0 < σ1. Show that the test X̂ that maximizes P (X̂ = 1 | X = 1) while ensuring
P (X̂ = 1 | X = 0) is at most β is of the form

X̂ =

{
1 if

∑n
i=1X

2
i > c

0 otherwise

You do not need to find the specific value of c.

We know that X̂ = 1 if

`(x) =
f(x|σ1)
f(x|σ0)

> λ

The likelihood ratio is

`(x) =

∏n
i=1 P (N (0, σ2

1) = xi)∏n
i=1 P (N (0, σ2

0) = xi)

=
n∏
i=1

1√
2πσ1

exp
[
− x2i

2σ2
1

]
1√
2πσ0

exp
[
− x2i

2σ2
0

]
=
(σ0
σ1

)n
exp
[1

2

∑
i

x2i

(
1

σ2
0

− 1

σ2
1

)]
Manipulating the inequality yields:

exp
[1

2

∑
i

x2i

(
1

σ2
0

− 1

σ2
1

)]
> λ

(σ1
σ0

)n
1

2

∑
i

x2i

( 1

σ2
0

− 1

σ2
1

)
> log(λ(σ1/σ0)

n)

∑
i

x2i >
2 log(λ(σ1/σ0)

n)(
1
σ2
0
− 1

σ2
1

) = c

for some c. Note we used the fact that 1
σ2
0
− 1

σ2
1
> 0.
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(j) Graphical Estimators [6]

Each of the following 4 plots correspond to an estimator φi(Xi) of Yi given Xi. In each
plot, the joint density of (Xi, Yi−φi(Xi)) is shown. Assuming the density is the uniform
distribution on the shaded area, could φi(Xi) be the LLSE and/or the MMSE? Use
properties you know about the LLSE and MMSE. No justification is necessary.

−1 1

−1

1

X1

Y1 − φ1(X1)

−1 1

−1

1

X2

Y2 − φ2(X2)

© Both © MMSE © LLSE © None © Both © MMSE © LLSE © None

−1 1

−1

1

X3

Y3 − φ3(X3)

−1 1

−1

1

X4

Y4 − φ4(X4)

© Both © MMSE © LLSE © None © Both © MMSE © LLSE © None

φi(Xi) is the LLSE if and only if E[Yi − φi(Xi)] = 0 and E[(Yi − φi(Xi))Xi] = 0.
φ(Xi) is the MMSE if and only if E[Yi − φi(Xi)|Xi] = 0 ∀x.

Thus, φ1 is neither (correlated), φ2 could be the MMSE/LLSE, φ3 is (not 0 mean),
and φ4 could be the LLSE.
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(k) Jointly Gaussian Probability [5]

Let X be distributed as N (0, 1) and Y be distributed as N (1, 1) with covariance 0.5.
Define W = X − Y . Find Pr(W > Y ) in terms of the standard Gaussian CDF, Φ.

W and Y are jointly gaussian, so W − Y = X − 2Y is Gaussian.

E[X − 2Y ] = E[X]− 2 E[Y ] = 0− 2 · 1 = −2

var(X − 2Y ) = cov(X − 2Y,X − 2Y )

= var(X)− 4 cov(X, Y ) + 4 var(Y )

= 1− 4 · 0.5 + 4 · 1 = 3

Hence, P (W − Y > 0) = P (N (−2, 3) > 0) = P (N (0, 1) > 2√
3
) = Φ(− 2√

3
).

(l) Jointly Gaussian True or False [5]

For the following two questions, justify your answer or describe a counterexample.

(i) If two random variables X and Y are marginally Gaussian, then they are jointly
Gaussian.

© True © False

False. Consider U, V
iid∼ N (0, 1). We can define X and Y by zeroing out

the density in the second and fourth quadrants and doubling the density in the
first and third. The marginal densities stay the same but the RVs are no longer
jointly Gaussian. Check out https://stats.stackexchange.com/questions/30159/is-
it-possible-to-have-a-pair-of-gaussian-random-variables-for-which-the-joint-d

(ii) If two independent random variables X and Y are marginally Gaussian, then they
are jointly Gaussian.

© True © False

True. We can express X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) as[

X
Y

]
=

[
σX 0
0 σY

][X−µX
σX

Y−µY
σY

]
+

[
µX
µY

]
Here, X−µX

σX
and Y−µY

σY
are independent standard normal RVs.

(iii) If L[X | Y ] = E[X | Y ], then X and Y are jointly Gaussian.

© True © False

False. If X and Y are independent, then E[X | Y ] = E[X], which is linear.
However, X and Y could have arbitrary distributions.

8



2 Graphical Density [16]

−1 1

1

X

Y 2A

A

(a) MMSE [4]

Find the MMSE of Y given X.

E[Y |X = x] =

{
1
2

+ X
2

if x ≤ 0
1
2
− X

2
if x > 0

(b) Covariance [6]

Show that cov(X, Y ) = −var(Y )
6

.

To find the covariance we need to find E[XY ]−E[X] E[Y ]. To find both E[XY ] and
E[X], we will use the tower property. Note that

E[X] = E[E[X | Y = y]]

E[XY ] = E[E[XY |Y = y]] = E[Y E[X|Y = y]]

To compute E[X|Y = y], we can look at the left and right halves separately. The
average X for a given Y = y is 1−y

2
in the right half and −1−y

2
in the left half.

Weighting these by 2
3

and 1
3
, we get

E[X | Y = y] =
2

3
· 1− y

2
− 1

3
· 1− y

2
=

1− y
6

E[X] = E[
1− Y

6
] =

1− E[Y ]

6

E[XY ] = E[
Y (1− Y )

6
] =

E[Y ]− E[Y 2]

6
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Combining everything together, we get

cov(X, Y ) =
E[Y ]− E[Y 2]

6
− 1− E[Y ]

6
E[Y ]

=
−E[Y 2] + E[Y ]2

6
= −var(Y )

6

(c) LLSE [6]

Find the LLSE of Y given X, L[Y | X]. Hint: To find var(X), think about the random
variable —X—.

Note: There was a mistake in the solutions originally.

The formula of LLSE is

L[Y |X] = E[Y ] +
cov(X, Y )

var(X)
(X − E[X])

= E[Y ] +
− var(Y )

6 var(X)
(X − E[X])

To find E[Y ] we should find the marginal PDF for Y . A look at the the graph
tells us its linearly decreasing from 0 to 1 and therefore should be of the form
fY (y) = α(1− y). The normalizing constant ends up being 2, and therefore,

E[Y ] =

∫ 1

0

2(1− y) · y dy =

∫ 1

0

2y − 2y2 dy =
2

2
− 2

3
=

1

3

Then, using the fact that E[X] = 1−E[Y ]
6

from the previous part, we get

E[X] =
1− 1

3

6
=

1

9

Now that we have E[X] and E[Y ], to calculate var(X) and var(Y ), we need to find
E[X2] and E[Y 2]. To find E[Y 2], we use the definition.

E[Y 2] =

∫ 1

0

2(1− y) · y2 dy = 2(
1

3
− 1

4
) =

1

6

To find E[X2], we use the fact that E[X2] = E[|X|2]. However |X| is just X “folded”
on itself, and it looks exactly like Y afterwards. So E[X2] = E[Y 2] = 1

6
. To put

everything together,

L[Y | X] =
1

3
+−1

6

( 1
6
− (1

3
)2

1
6
− (1

9
)2

)
(X − 1

9
)

=
1

3
− 3

50
(X − 1

9
)
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3 Operating Systems [16]

In an operating system, new tasks arrive to a queue according to a PP with rate λ. Fur-
thermore, suppose tasks are processed one by one in the order they arrived, and that the
processing time for each task independently has an exponential distribution with rate µ. For
all of the parts, suppose λ < µ and that a long time has passed.

(a) Expected Number of Tasks [6]

What is the expected number of tasks E[X] in the queue?

We can model the number of tasks in the queue with the following CTMC.

0 1 2 3 . . .

λ

µ

λ

µ

λ

µ

λ

µ

To calculate the expected number of tasks after a long time, we can calculate the
stationary distribution and use the definition. The stationary distribution is

π(k) =
(

1− λ

µ

)(λ
µ

)k
The expectation is

E[X] =
∞∑
k=1

k ·
(λ
µ

)k(
1− λ

µ

)
=
λ

µ
·
[ ∞∑
k=1

k ·
(λ
µ

)k−1(
1− λ

µ

)]
=
λ

µ
· 1

1− λ
µ

=
λ

µ− λ

(b) Expected Delay [5]

A new task arrives on the queue. What is the expected delay E[T ] before it is done
processing? You may write your answer in terms of your answer to the previous question,
E[X].

Once a task arrives in the queue, it just needs to wait for each task ahead of it to
be processed, then itself. Each task takes time Exponential(µ), so

E[T ] = E[E[T | X]] = E
[X + 1

µ

]
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=
1

µ
·
( λ

µ− λ
+
µ− λ
µ− λ

)
=

1

µ
· µ

µ− λ
=

1

µ− λ

(c) LLSE [5]

Suppose the level of the noise your computer fan makes depends on the number of tasks
in the queue. In particular, the noise level Z ∼ Poisson(X). What is L[X | Z]? You
may write your answer in terms of E[X] and var(X).

We need to calculate cov(X,Z), var(Z), and E[Z].

• E[Z] = E[E[Z | X]] = E[X].

• cov(X,Z) = E[XZ] − E[X] E[Z] = E[E[XZ | X]] − E[X]2 = E[X E[Z | X]] −
E[X]2 = E[X2]− E[X]2 = var(X).

• var(Z) = E[var(Z | X)] + var(E[Z | X]) = E[X] + var(X).

The answer is

L[X | Z] = E[X] +
var(X)

var(X) + E[X]
(Z − E[X])
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4 Gaussian Poker [16]

Justin and Will are playing poker. Justin wants to estimate the true value of Will’s hand
from his bets. The game can be modeled as follows.

• Initially his hand has value X0 ∼ N (0, 3). It can actually be negative.

• Every round, a new card is drawn, and the value of his hand changes to Xn = Xn−1+Vn,
where Vn ∼ N (0, 1) (n = 1, 2, . . . ).

• After each round, he bets Yn = Xn +Wn, where Wn ∼ N (0, σ2
w) (n = 1, 2, . . . ). These

can also be negative.

• X0, V1, V2, . . . , and W1,W2, . . . are all independent.

(a) First Round [5]

Suppose σ2
w = 2. What is E[X1 | Y1]?

We can initialize the Kalman Filter equations with x̂0|0 = E[X0] = 0 and σ2
0|0 =

var(X0) = 3. Then,

x̂1|0 = x̂0|0 = 0

σ2
1|0 = σ2

0|0 + σ2
v = 3 + 1 = 4

k1 =
σ2
1|0

σ2
1|0 + σ2

w

=
4

4 + 2
=

2

3

x̂1|1 = x̂1|0 + k1(Y1 − x̂1|0) =
2

3
Y1

(b) Second Round [6]

Again suppose σ2
w = 2. What is E[X2 | Y1, Y2]?

We can continue the Kalman Filter equations as follows.

σ2
1|1 = σ2

1|0(1− k1) = 4(1− 2

3
) =

4

3

x̂2|1 = x̂1|1 =
2

3
Y1

σ2
2|1 = σ2

1|1 + σ2
v =

4

3
+ 1 =

7

3

k2 =
σ2
2|1

σ2
2|1 + σ2

w

=
7
3

7
3

+ 2
=

7

13

x̂2|2 = x̂2|1 + k2(Y2 − x̂2|1)

=
2

3
Y1 +

7

13
(Y2 −

2

3
Y1)
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=
12

39
Y1 +

7

13
Y2

(c) He’s Bluffing [5]

Suppose Justin didn’t actually know Will’s betting habits, but wanted to estimate his
spread. Given a record of Will’s bets Y1, . . . , Yn and the value of his hand on the corre-
sponding rounds X1, . . . , Xn find the MLE of the standard deviation σw.

The MLE estimator maximizes the log likelihood `(σw|Xn, Yn):

`(σw|Xn, Yn) =
n∑
k=1

log f(Yk −Xk|σw)

=
n∑
k=1

log
[ 1√

2πσw
e
− (Yk−Xk)

2

2σ2w

]
∝ −

n∑
k=1

[
log σw +

1

2

(Yk −Xk

σw

)2]
Taking the partial derivative with respect to σw:

−
[ n
σw
−

n∑
k=1

(Yn −Xn)2

σ3
w

]
= 0

nσ2
w −

n∑
k=1

(Yn −Xn)2 = 0

σ̂w =

√√√√ 1

n

n∑
k=1

(Yk −Xk)2
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5 Gaussian Process [16]

We define a Gaussian Process to be a sequence of random variables X1, X2, . . . such that
any finite subset Xi1 , Xi2 , . . . , Xin is jointly Gaussian. (Thus, this further implies that each of
the random variables Xi are Gaussian.) Suppose that the mean of each variable is E[Xi] = 0,
and the covariance between two of the Gaussians Xi, Xj is

cov(Xi, Xj) =
1

ij
min(i, j).

(a) Covariance Matrix [5]

Compute the covariance matrix of the random vector

[
Xi

Xj

]
where i < j.

[1
i

1
j

1
j

1
j

]

(b) Orthogonalization [6]

For i < j, find the random vector

[
Yi
Yj

]
such that Yi, Yj are linear combinations aiXi +

biXj, ajXi + bjXj of the random variables Xi, Xj and the covariance matrix of

[
Yi
Yj

]
is

the identity matrix I.

We first normalize Xi by letting Yi = Xi√
var(Xi)

=
√
iXi. We then want to get Yj by

finding the part of Xj that is orthogonal to Xi, then normalizing. The orthogonal
component is

Xj −
〈Xj, Xi〉
〈Xi, Xi〉

Xi = Xj −
cov(Xj, Xi)

var(Xi)
Xi = Xj −

i

j
Xi

To normalize this, we find the variance

var(Xj −
i

j
Xi) = var(Xj)− 2

i

j
cov(Xi, Xj) +

i2

j2
var(Xi)

=
1

j
− 2i

j2
+

i

j2
=
j − i
j2

Yj =
j√
j − i

(
Xj −

i

j
Xi

)
This leads to

Yi =
√
iXi, Yj =

jXj − iXi√
j − i
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(c) Process Convergence [5]

Prove that the sequence of random variables {Xi}∞i=1 converges to 0 almost surely. Hint:
Choose i = j − 1 in part (b) and see if you can rewrite the Gaussian Process {Xi}∞i=1 so
that we can apply SLLN.

Part (b) tells us that Zj = jXj − (j − 1)Xj−1 is a N (0, 1) random variable. Now,
comparing two different Zi and Zj (WLOG assuming i < j), note that

cov(Zi, Zj) = cov(iXi − (i− 1)Xi−1, jXj − (j − 1)Xj−1)

=
ij

j
− i(j − 1)

j − 1
− (i− 1)j

j
+

(i− 1)(j − 1)

j − 1

= i− i− (i− 1) + (i− 1) = 0

Since all Zi are uncorrelated and jointly Gaussian, they’re independent. And since
it turns out that

Xn =
1

n
(nXn)

=
1

n

n∑
i=1

iXi − (i− 1)Xi−1

=
1

n

n∑
i=1

Zi

by the strong law of large numbers this converges almost surely to 0.
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