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Rules.

• Unless otherwise stated, all your answers need to be justified and your work must
be shown. Answers without sufficient justification will get no credit.

• You have 160 minutes to complete the exam and 10 minutes exclusively for submitting your
exam to Gradescope. (DSP students with X% time accomodation should spend 160 · X%
time on the exam and 10 minutes to submit).

• Collaboration with others is strictly prohibited.

• You may reference your notes, the textbook, and any material that can be found through the
course website. You may use Google to search up general knowledge. However, searching up
a question is not allowed.

• You may not use online solvers or graphing tools (ex. WolframAlpha, Desmos, Python).
Simple functions (ex. combinations, multiplication) are fine.

• For any clarifications you have, please create a private Piazza post. We will have a Google
Doc that shows our official clarifications.

Problem points earned out of

Problem 1 16
Problem 2 7
Problem 3 7
Problem 4 7
Problem 5 8
Problem 6 10
Problem 7 10
Problem 8 13
Problem 9 7
Problem 10 8
Problem 11 7
Total 100
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1 True or False (4 + 4 + 4 + 4 points)

For each of the following, say whether the assertion is true or false. If it is true, provide justification,
and if it is false, give a counterexample.

(a) For any finite sample space Ω and any event A ⊆ Ω, Pr(A) = |A|
|Ω| .

False, any sample space with non-uniform outcomes (and corresponding event) is a valid
example.

(b) If Y = X + Z is Gaussian, then X and Z are both marginally Gaussian.

False. Consider U = N (0, 1) and let X = U1{U ≥ 0} and Z = U1{U < 0}. Then, Y is
Gaussian but neither X nor Z are marginally Gaussian.

(c) Michael and Kevin are playing a game where Michael scores Xi ∼ Geometric(1/m) points and
Kevin scores Yi ∼ Geometric(1/k) points at round i, independently of other rounds. Then, as
the number of rounds goes to infinity, the average total number of points they score per round
converges almost surely to m+ k.

True. This is SLLN on the iid variables (Xi + Yi).

(d) Suppose a random variable X is bounded in [0, 1], and furthermore suppose that E[X] ≥ ε.
Then Pr(X ≥ ε/2) ≥ ε/2.

Suppose towards a contradiction this is not the case. Then we have

E[X] = E[X|X ≥ ε/2] Pr(X ≥ ε/2) + E[X|X < ε/2] Pr(X < ε/2)

< 1 · ε
2

+
ε

2
· 1 = ε

which is a contradiction to our assumption that E[X] ≥ ε.

2 Waiting Game (7 points)

The amount of time you have to wait for UC Berkeley to announce the PNP policy is exponentially
distributed with parameter λ. Solve for the optimal Chernoff upper bound (by applying Markov’s
inequality to esX) for the probability that you have to wait for longer than some constant a.

By memoryless property of exponentials, if X = time until the announcement, then X is expo-
nentially distributed with parameter λ.

Pr(X > a) = Pr(esX > esa) ≤ E[esX ]
esa

Using MGF of an exponential distribution, Pr(X > a) ≤ mins
λ

(λ−s)esa
This is equivalent to maximizing the denominator. Taking the derivative of the denominator
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and setting to zero, we have

esa(λa− 1− as) = 0 =⇒ s =
λa− 1

a
.

Hence, Pr(X > a) ≤ λ
(λ−λa−1

a
)eaλ−1 = λa

eλa−1 .

3 Terms and Conditionings (7 points)

Suppose X ∼ min{q, Y }, where Y ∼ Geom(p) is a geometric RV with parameter p and q is a
positive integer. Calculate E[X] in terms of p and q.

We have that

E[X] = q Pr[Y > q] + E[Y | Y ≤ q] Pr(Y ≤ q)

= q(1− p)q + E[Y ]− E[Y |Y > q] Pr[Y > q]

= q(1− p)q + E[Y ]− (q + E[Y ])(1− p)q (Memoryless property of Geometric)

= E[Y ]− E[Y ](1− p)q =
1

p
− (1− p)q

p
=

1− (1− p)q

p
.

4 Homework Party (7 points)

Michael is trying to budget time for his problem set. He knows that the number of problems on
the problem set is Poisson(6) distributed, and the probability that he can solve any given problem
is 1

4
, and is independent of all other problems. If he can solve the problem, the amount of time he

spends on the problem is Exponential
(

1
6

)
distributed; otherwise, the amount of time he spends on

the problem is Exponential
(

1
10

)
distributed. What is the expected amount of time that Michael

will spend on the problem set?

Let X represent the amount of time Michael will spend on the problem set, let N represent
the number of problems on the problem set, and let S represent the number of problems that
Michael can solve. Similarly, let the parameter of the Poisson distribution be λ, the probability
of a problem being solved be p, the parameter of the first exponential be α, and the parameter
of the second exponential be β.
We wish to compute E[X]; by the law of iterated expectation, we have that

E[X] = E[E[X|S]] = E[E[E[(X|S)|N ]]] = E[E[E[X|S,N ]]].

Given S and N , the expected amount of time that Michael will spend is S
α

+ N−S
β

= S
(

1
α
− 1

β

)
+

N
β

. Thus, we wish to compute

E
[
E
[
S

(
1

α
− 1

β

)
+
N

β

]]
= E

[
E[S]

(
1

α
− 1

β

)
+ E[N ]

1

β

]
.
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We know that E[N ] is λ. We compute E[S] again using iterated expectation:

E[S] = E[E[S|N ]] = E[pN ] = pλ,

since S|N is a Binomial(N, p) distribution. Thus,

E
[
E[S]

(
1

α
− 1

β

)
+ E[N ]

1

β

]
=

(
1

α
− 1

β

)
pλ+

λ

β
= λ

(
p

α
+

1− p
β

)
.

Taking λ = 6, p = 1
4
, α = 1

6
, and β = 1

10
gives us that E[X] = 54.

Alternate Solution:
There are other ways to reason about this – the simplest is probably to note that by poisson
splitting, the number of questions Michael can solve is N1 = Poisson(3/2) and the number of
questions he cannot solve is N2 = Poisson(9/2). Denote X1 as the amount of time he spends
on questions he can solve, and X2 the amount of time he spends on problems he cannot solve.
Then we have that

E[X] = E[X1 +X2] = E[X1] + E[X2] = E[E[X1|N1]] + E[E[X2|N2]] = 6 · 3

2
+ 10 · 9

2
= 54.

5 Seasonal Depression (8 points)

Kevin is a store owner in a part of town with strange weather. The weather alternates between
two states: sunny and rainy. The length of each sunny period and rainy period is determined by
an independent exponential with rate 1.

• If the weather is sunny, customers arrive at a store according to a Poisson process with rate
1 and each one leaves with rate 1.

• If the weather is rainy, customers arrive at a store according to a Poisson process with rate 1
and do not leave.

Suppose it is currently sunny and there are no customers in the store. What is the expected amount
of time before there are at least 2 people in the store?

The key to this problem here is that we can set this up as a markov chain with 4 non-terminal
states. There will be one state for each combination or sunny/rainy and number of customers.
State Si represents sunny with i customers, and Ri represents rainy with i customers.
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We set up the hitting time equations, where xT represents the expected time to reach END
starting from state T .

xS0 =
1

2
+

1

2
xS1 +

1

2
xR0

xS1 =
1

3
+

1

3
xR1 +

1

3
xS0

xR0 =
1

2
+

1

2
xR1 +

1

2
xS0

xR1 =
1

2
+

1

2
xS1 .

We solve and get the solution

xS0 =
5

2
.

6 Geometric Perspective on Variance (3 + 5 + 2 points)

In this problem, we prove the identity var(X) = E[var(X|Y )] + var(E[X|Y ]). Assume X and Y are
zero mean. You may use that var(X|Y ) = E[(X − E[X|Y ])2|Y ].

(a) First, show that E[var(X|Y )] = var(X − E[X|Y ]).

E[var(X|Y )] = E[E[(X − E[[X|Y ])2|Y ]]

= E[(X − E[X|Y ])2]

= var(X − E[X|Y ]).

The last inequality holds because X − E[X|Y ] is zero mean.
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(b) Draw X, E[X|Y ], and X−E[X|Y ] in the Hilbert space of random variables. Specify and justify
the angle between E[X|Y ] and X − E[X|Y ].

X

E[X|Y ]

X − E[X|Y ]

The angle between X − E[X|Y ] and E[X|Y ] is π/2 = 90 degrees due to the orthogonality
of the MMSE.

(c) Use the previous two parts to conclude the identity var(X) = E[var(X|Y )] + var(E[X|Y ]).

This is the Pythagorean theorem.

7 Coldplay (2 + 4 + 2 + 2 points)

You have a funny clock, which displays a number x ∈ {1, ..., 12} at any given time, that behaves
differently than a normal clock. First, it only shows the current hour. For every hour x ∈ {1, ..., 11},
the clock behaves normally, meaning x 7→ x + 1 with probability 1. However, upon reaching 12
(AM or PM), the next hour it shows is 7 with probability p ∈ (0, 1), or 1 otherwise (i.e. it will read
a sequence (11, 12, 7, 8, 9, ...) or (11, 12, 1, 2, 3, ...), respectively).

(a) Suppose the clock currently reads 10. What is the expected time until the clock reads 3?

This can be seen to be 5 + 6 · E[Geometric(1− p)− 1] = 6
1−p − 1.

(b) Compute the stationary distribution π. (Hint: think about the relationship between the station-
ary distribution in a state and expected return time to a state).

By symmetry, π12 = π7 = ... = π11 and π1 = ... = π6. We have that

π12 =
1

E12[T+
12]

=
1

6p+ 12(1− p)
=

1

12− 6p
.

Then, we must that have π1 = ... = π6 = (1− 6π12)/6 = 1−p
12−6p

.

(c) Suppose, infinitely long ago, your great∞-grandparents initialized the clock according to the
initial distribution ψ. Can you use the stationary distribution from the previous part to say
what the probability that the clock is currently in state 3 is? Justify your answer.
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No. The chain has period 6, so we are not guaranteed to converge.

(d) Draw or describe a continuous time Markov chain with the same stationary distribution.

One example could be Q(i, i+ 1) = 2 for i = 1, ..., 11, and then Q(12, 1) = Q(12, 6) = 1.

8 Hidden Markovs Among Us (3 + 3 + 3 + 2 + 2 points)

Let the number of people infected by COVID on day n be denoted by Xn. Each day, Xn increases
by 1 with probability 2

3
or decreases by 1 with probability 1

3
. If Xn = 0, it stays the same with

probability 1
3

or increases with probability 2
3
. Then, let Yn ∼ Binomial(Xn,

3
4
) represent the number

of people who test positive for COVID, i.e. that we report having COVID. Assume X0 = 1.

(a) What is the MAP estimate of X2 given that we observe Y2 = 1?

There are three possible ways we can observe Y2 = 1. Enumerating them and then evalu-
ating using conditional probability:

(1) X1 = 0, X2 = 1, Y2 = 1, which happens with probability 1
3
· 2

3
· 3

4
= 1

6

(2) X1 = 2, X2 = 1, Y2 = 1, which happens with probability 2
3
· 1

3
· 3

4
= 1

6

(3) X1 = 2, X2 = 3, Y2 = 1, which happens with probability 2
3
· 2

3
· 3 · (1− 3

4
)2 · 3

4
= 1

16

Normalizing, we get P (X2 = 1|Y2 = 1) =
1
6

+ 1
6

1
6

+ 1
6

+ 1
16

= 16
19

. Our MAP estimate is X̂2 = 1.

(b) What is the MLE estimate of X2 given Y2 = 1? Multiple values are fine.

This is the same as question 1e from Midterm 1. The pmf of the binomial given Y2 = 1 is
proportional to X2 · (1

4
)X2 . Checking the first couple values of X2:

(1) X2 = 1: .25

(2) X2 = 2: .125

(3) X2 = 3: .057

So our MLE estimate is also 1.

(c) What is the LLSE estimator of X2 given Y2 = 1? (You may use Var(Y2) ≈ 1.056)



Final Page 8 of 11

First we solve for the covariance to apply the LLSE formula:

Cov(X2, Y2) = E[X2Y2]− E[X2]E[Y2]

= E[X2 E[Y2|X2]]− 3

4
E[X2]2

= E[X2
3

4
X2]− 3

4
E[X2]2

=
3

4
Var(X2)

We calculate P (X2 = 3) = 4
9
, P (X2 = 1) = 4

9
, P (X2 = 0) = 1

9
. This gives us E[X2] = 16

9

and Var(X2) ≈ 1.2839.

As a result our LLSE is L[X2|Y2] ≈ .9117Y1 + .5627. For Y2, this is equal to 1.4744.

(d) What is the MMSE estimator of X2 given Y2 = 1?

We can reuse the probabilities from part (a). We get X̂2 = 3
19
· 3 + 16

19
· 1 = 25

19
≈ 1.3158.

(e) Is the Markov chain {Xt}∞t=0 positive recurrent, null recurrent, or transient?

Transient. Ignoring the self-loop, it is the birth-death chain.

9 Dungeons and Dragons (7 points)

In a game of Dungeons and Dragons, Aditya suspects Catherine is using a loaded 20-sided die.
However, he doesn’t want to risk falsely accusing her, so he conducts a hypothesis test to upper-
bound the probability of a false alarm. Suppose if X = 0, the die is fair and a roll Y is distributed
according to Pr(Y = y|X = 0) = 0.05 for 1 ≤ y ≤ 20. If X = 1, the die is loaded, and rolls have
the distribution

Pr(Y = y|X = 1) =

{
0.025 1 ≤ y ≤ 10

0.075 11 ≤ y ≤ 20

(or more simply, the probability of being greater than 10 is three times the probability of being
less than or equal to 10). Construct a Neyman-Pearson decision rule to maximize the probability
Aditya is correct if he accuses Catherine of cheating, while constraining the probability Aditya
falsely accuses Catherine to be ≤ 0.05.

Notice that the cases 1-10 and 11-20 have equivalent probabilities in either case, so it’s equivalent
to consider the indicator random variable Z = 1{Y > 10}, i.e. Z = 1 if 11 ≤ Y ≤ 20 and
Z = 0 otherwise. The likelihood ratio in terms of Z is
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L(z) =
Pr(Z = z|X = 1)

Pr(Z = z|X = 0)
=

{
1
2

z = 0
3
2

z = 1

This is monotonically increasing (it has to be as there are only two elements), so next we check
whether we need to reduce the false-positive or false-negative probability. The “naive” PFA is
Pr(Z = 1|X = 0) = 0.5, so the test needs to reduce it, i.e. the optimal decision rule has the
form

r(z) =

{
0 z = 0

1 w.p.γ z = 1

To set γ we look at the PFA under the decision rule:

Pr(r(Z) = 1|X = 0) = 0.05

Pr(r(Z) = 1|Z = 1) Pr(Z = 1|X = 0) = 0.05

γ · 0.5 = 0.05.

Therefore γ = 0.1, so the overall decision rule is

r(y) =

{
0 1 ≤ y ≤ 10

1 w.p. 1
10

11 ≤ y ≤ 20

10 Delayed Kalman Filter (6 + 2 points)

Consider a process with the transition rule xn+1 = axn + vn where vn ∼ N (0, σ2
v). We can only

observe the process at even-numbered times, i.e. we see y2n = x2n + w2n, where wn ∼ N (0, σ2
w).

1. Find a recurrence relation for the MMSE of the even states x̂2n = E[x2n|y0, y2, . . . , y2n] in
terms of x̂2n−2.

We can describe this as a normal Kalman filtering problem with a different transition
rule:

x2n = ax2n−1 + v2n−1 = a(ax2n−2 + v2n−2) + v2n−1 = a2x2n−2 + (av2n−2 + v2n−1),

i.e. transitions with a2 in place of a and with noise from a N (0, (a2 + 1)σ2
v) distribution.

The recurrence for the even state MMSE is therefore
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x̂2n = a2x̂2n−2 + k2n(y2n − a2x̂2n−2),

where the Kalman gain k2n is given by

k2n =
a4σ2

2n|2n + (a2 + 1)σ2
v

a4σ2
2n|2n + (a2 + 1)σ2

v + σ2
w

and the estimator variance obeys the recurrence

σ2
2n+2|2n+2 = (1− kn)a4σ2

2n|2n.

2. Find a recurrence relation for the MMSE of the odd states x̂2n+1 = E[x2n+1|y0, y2, . . . , y2n] in
terms of x̂2n.

ˆx2n+1 = a2nx̂2n

11 Oh Yeahhhhh (2 + 5 points)

Suppose an infinitely large bucket is being filled with kool-aid continuously with rate 1 Liters/min.
Two bartenders serve drinks according to independent Poisson Processes with rates 2 drinks/min
(Bartender A) and 3 drinks/min (Bartender B). Whenever they serve a drink, they empty the
shared bucket into the glass and serve that. Say this process started infinitely in the past.

1. Suppose you come in at a random time, cut to the front of the line, and take the next drink
that is served by either bartender. What is the expected volume of the drink you get?

This is RIP of the merged process, so the answer is 2/5.

2. Suppose you come in at a random time, again cut to the front, but insist on taking the next
drink served by Bartender A. What is the expected volume of the drink you receive?

For bartender A, who is serving drinks at rate 2 drinks/min. Then let X be the amount
of kool-aid you receive. We have

E[X|you take bartender A] = Pr[Next arrival is bartender A]E[RIP of merged process]+

Pr[next arrival is bartender B]E[interval length of merged PP]

=
2

5

2

5
+

3

5

1

5
=

7

25
.
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