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Rules.

• Unless otherwise stated, all your answers need to be justified and your work must
be shown. Answers without sufficient justification will get no credit.

• You have 170 minutes to complete the exam. (DSP students with X% time accommodation
should spend 170 ·X% time on the exam and 10 minutes to submit).

• This exam is not open book. You are permitted to use three double-sided handwritten cheat
sheets. No calculator or phones allowed.

• Collaboration is prohibited. If caught cheating, you may fail and face disciplinary actions.

• Write in your SID on every page to receive 1 point.

Problem points earned out of

SID 1
Problem 1 22
Problem 2 18
Problem 3 15
Problem 4 9
Problem 5 11
Problem 6 14
Problem 7 11
Problem 8 15
Total 116
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1 Another Potpourri of Probability [4 + 7 + 6 + 7 points]

(a) Coin Flips [4 points]

Let X1, X2 be i.i.d. Bernoulli(1/2) random variables (i.e. fair coin flips).

Show for this choice of X1 and X2 that H(X1) + H(X2) ≥ H(X1 + X2).

Since X1 + X2 has distribution

X1 + X2 =


0 w.p. 1/4

1 w.p. 1/2

2 w.p. 1/4

the entropy is

H(X1 + X2) = −1

4
log2

1

4
− 1

2
log2

1

2
− 1

4
log2

1

4
=

1

2
+

1

2
+

1

2
=

3

2
,

which is less than H(X1) + H(X2) = 2.
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(b) Gaussians [2 + 2 + 3 points]

Let X = 2Z1 + 3Z2 and Y = Z1 + 2Z2, where Z1, Z2 ∼iid N(0, 1).

(i) What is the covariance matrix between X and Y , where the entries are[
var(X) cov(X, Y )

cov(Y,X) var(Y )

]
?

(ii) Find  L[X|Y ].

(iii) Find MMSE[X|Y ].

(i) As

(
X
Y

)
= AZ⃗ where A =

(
2 3
1 2

)
and Z⃗ has i.i.d. N(0, 1) entries, we conclude that

the covariance matrix is given by Σ = AA⊤ =

[
2 3
1 2

] [
2 1
3 2

]
=

[
13 8
8 5

]
.

(ii) We compute  L[X|Y ] = E[X] + cov(Y,X)
var(Y )

(Y − E[Y ]) = 8
5
Y by observing that X and

Y are both zero-mean and reading off the variance and covariance calculated in the
previous part.

(iii) Since X and Y are jointly Gaussian, MMSE[X|Y ] =  L[X|Y ] = 8
5
Y .
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(c) Poisson MGF [6 points]

The MGF of X ∼ Poisson(λ) is given by E[etX ] = eλ(e
t−1). Using this fact, find the distribution

of X + Y where X ∼ Poisson(λ), Y ∼ Poisson(µ), and X is independent of Y .

Note: Finding the distribution without using the MGF will not receive any credit.

E[et(X+Y )] = E[etXetY ]

= E[etX ]E[etY ]

= eλ(e
t−1)eµ(e

t−1)

= e(λ+µ)(et−1)

This is the MGF of a Poisson(λ + µ) random variable. As MGFs are unique, we conclude
X + Y ∼ Poisson(λ + µ).
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(d) Tom and Jerry [3 + 4 points]

Tom, Jerry, and 6 of Jerry’s other friends are sitting in a room. Outside of the room is a chunk
of cheese. At every hour, exactly one of them will get up and exit the room with uniform
probability (i.e. if n of them are left, then any one of them will exit with probability 1

n
). Once

someone exits the room, they will not return. If Jerry or any one of his friends exits and sees
the cheese outside the room, they will eat it completely and leave nothing behind. However,
Tom will ignore the cheese.

(i) What’s the probability that Jerry will get to eat the cheese?

(ii) Now suppose Sohom is also sitting in the room alongside Tom, Jerry, and Jerry’s 6 friends.
Similar to Tom, Sohom will ignore the cheese once he exits the room. Now what’s the
probability that Jerry will get to eat the cheese?

(i) p = 6!×8
8!

= 1
7
. There are 8! total orders in which everybody can leave. If we only

consider Jerry and his friends, to make sure Jerry gets the cheese, Jerry needs to
always be the first among them to go out. In this case, there are 6! ways to order the
rest of Jerry’s friends. Finally, Tom can leave at any time. Once the others’ times
are fixed, there are 8 positions where we can place Tom into the sequence. Therefore
there are 6!× 8 sequences in which Jerry can get the cheese.

(ii) p = 1
7
. We actually don’t care about when Tom and Sohom leave, since they won’t

eat the cheese. So we only require Jerry to leave before his 6 friends. Each of the 7
people has the same probability to leave at each hour, so the probability that Jerry
leaves first among the 7 people is 1

7
by symmetry.
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2 Markov Chain(s) [8 + 10 points]

(a) CTMC [4 + 4 points]

Consider the following CTMC:

A

B C

D

11

2

11

2

(i) Compute its stationary distribution πCTMC using the associated jump chain.

(ii) Compute its stationary distribution πCTMC using uniformization.

Note: Finding πCTMC without using the specified method will not receive any credit.

(i) The jump chain looks like:

A

B C

D

11/3

2/3

1/31

2/3

We can solve to get πJump = [1/8, 3/8, 3/8, 1/8] (corresponding to states A, B, C, D,
respectively). Then the stationary distribution is given by

πCTMC(x) =

1
Q(x)

πJump(x)∑
y

1
Q(y)

πJump(y)

In particular, we can calculate this to be

πCTMC =
1

1/8 + 1/8 + 1/8 + 1/8
[1/8, 1/8, 1/8, 1/8]

= [1/4, 1/4, 1/4, 1/4]

(ii) Alternatively, using uniformization, we can pick a q ≥ maxx Q(x), i.e. pick q = 3, and



Final Page 7 of 16 Student ID:

compute the stationary distribution of the matrix

P = I +
1

q
Q =


2/3 0 1/3 0
1/3 0 2/3 0
0 2/3 0 1/3
0 1/3 0 2/3


Solving, we get πCTMC = πUniformized = [1/4, 1/4, 1/4, 1/4].
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(b) DTMC [4 + 6 points]

(i) Construct an irreducible discrete time Markov chain with a stationary distribution (1
2
, 1
2
).

Verify your solution by showing πP = π where π = (1
2
, 1
2
).

(ii) Construct an irreducible discrete time Markov chain such that the stationary distribution
is (1

2
, 1
4
, 1
4
). Verify your solution by showing πP = π where π = (1

2
, 1
4
, 1
4
).

Note: No credit will be given for this question if you do not explicitly show that πP = π.

(i) By symmetry, any DTMC with the transition matrix of the form

[
a 1− a

1− a a

]
works.

1 2

1− a

a

1− a

a

(ii) Note that if we group nodes 2 and 3 together, then it is a DTMC with a stationary
distribution of (1

2
, 1
2
). This motivates us to try to decompose the problem using the

construction from the previous part. Thus we consider a DTMC where node 1 has
a self-loop of probability a and where nodes 2 and 3 have probability of 1 − a of
transitioning back to 1. Then, we add self-loops and connections between 2 and 3 so
that they are symmetric. Thus, we find that any DTMC with the transition matrix
of the form  a (1−a)

2
(1−a)

2

1− a b a− b
1− a a− b b


works, provided that all entries in the matrix are nonnegative. However, there are
many other constructions that you can consider.

1

2 3

1−a
2

1−a
2

a

a− b

1−
a

b
a− b

b

1
−
a
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3 Graphical Density [6 + 4 + 6 points]

Consider the joint density fX,Y shown below:

(a) Find the value of A and determine closed-form expressions for fX and fY .

(b) Compute E[X|Y = y] for −1 ≤ y ≤ 1.

(c) Are the random variables X and Y independent? Are they uncorrelated?

(a) Integrating over the total area shown, we get 1
2
(A + A + A + A) + 2(2A) = 1 so A = 1

6
.

To get fX(x), we note that the density increases linearly from from −1 to 0 and decreases
linearly at the same rate from 0 to 1. The values of fX evaluated at x = −1, 0, and 1
should be 2 ∗ A : 2 ∗ 2A : 2 ∗ A = 1

3
: 2
3

: 1
3
. Hence the (normalized) density would be

fX(x) = 1−1≤x≤0

(
1

3
x +

2

3

)
+ 10<x≤1

(
−1

3
x +

2

3

)
= 1−1≤x≤1

(
−1

3
|x|+ 2

3

)
Since the joint density is symmetric, we know that fY takes the same form, but as a function
of y instead.

(b) For any value of y, it’s clear that the conditional density of X is symmetric about the origin,
so E[X|Y = y] = 0 for any −1 ≤ y ≤ 1.

(c) No, they are not independent. If y = 0 then X ∼ Uniform[−1, 1], but if y = 1/2, X is twice
as likely to fall in the range [−1/2, 1/2] than outside of it. They are, however, uncorrelated.
Since E[X|Y = y] = 0 = E[X], we can write

E[XY ] =

∫ 1

−1

E[XY |Y = y]fY (y)dy =

∫ 1

−1

yfY (y) E[X|Y = y]dy = 0 = E[X] E[Y ].
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4 Fishin’ Processes [4 + 5 points]

Akshit is fishing and observes that salmon arrive to his fishing hook according to a Poisson process
with rate λs per minute, and tuna arrive according to a Poisson process with rate λt per minute.
These two Poisson processes are independent.

(a) What is the probability that at least 2 salmon will arrive in one hour?

The arrival process of salmon is distributed according to PP (λs), so the number of arrivals
in a time period is given by Poisson(λst) = Poisson(60λs).

Pr(Poisson(60λs) ≥ 2) = 1− Pr(Poisson(60λs) ∈ {0, 1}) = 1− e−60λs − 60λse
−60λs

(b) Akshit decides to start selling salmon and tuna! He learns that some of the salmon and tuna are
poor quality, so with probability 0.1 he will discard a fish that he catches, independent of each
other. Suppose Albert is waiting to buy fish from Akshit. Assuming there are no previously
caught fish available, how long can Albert expect to wait for the next non-discarded fish?

The arrival process of salmon and tuna can be modeled by a merged Poisson process with
rate λs+λt. As fish are independently discarded, we can split this process (with probability
0.9) to get that undiscarded fish appear according to PP (0.9(λs + λt)). Thus the arrival
time of the first undiscarded fish T1 is distributed according to Exp(0.9(λs +λt)), so Albert
can therefore expect to wait E[T1] = 1

0.9(λs+λt)
minutes.
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5 Tennis Distribution [5 + 6 points]

Clark is playing tennis! The rate at which he hits depends on the quality of his tennis balls. Suppose
that the tennis ball quality is distributed as Λ ∼ Geometric(p), for some fixed p ∈ (0, 1) and given
that Λ = λ, the number of balls he hits is distributed as X ∼ Poisson(λ).

Hint: If f(x) > 0 for all x, then arg maxx f(x) = arg maxx ln(f(x)).

(a) What is MLE[Λ|X]?

(b) What is MAP[Λ|X]?

(a) Supposing that we observe X = x, we can compute the log-likelihood as

ℓ(λ) = lnP (X = x | Λ = λ)

= ln

(
λxe−λ

x!

)
= − ln(x!) + x lnλ− λ

ℓ′(λ) =
x

λ
− 1

Setting the derivative of the log-likelihood to 0 gives MLE[Λ | X] = X.

(b) As in the previous part, we compute the log-likelihood:

ℓ(λ) = lnP (X = x | Λ = λ)P (Λ = λ)

= ln

(
λxe−λ

x!
p(1− p)λ−1

)
= − ln(x!) + x lnλ + ln

(
p

1− p

)
− λ ln

(
e

1− p

)
ℓ′(λ) =

x

λ
− ln

(
e

1− p

)

Setting the derivative of the log-likelihood to 0 gives MAP[Λ | X] = X
(

1 + ln
(

1
1−p

))−1

.

As ℓ(λ) is a concave function and Λ is integer valued, we conclude that the MAP estimate
of Λ is max(⌊λ∗⌋, ⌈λ∗⌉) where λ∗ = X(1− ln(1− p))−1.
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6 Go Bears! [4 + 5 + 6 points]

Suppose that Cal wins the Big Game with probability p and Stanford with probability 1 − p,
independent of any previous year’s result. Your friend at Stanford suggests that p = 1

3
, but you

think that p = 2
3
. To decide who’s right, you plan to observe the result of three games. Let Y be

the number of games Cal wins, and let X be a binary random variable indicating whether you are
correct. That is, X = 0⇐⇒ p = 1

3
and X = 1⇐⇒ p = 2

3
.

Follow the steps to construct a Neyman-Pearson decision rule to maximize Pr{X̂ = 1|X = 1} under
the constraint that Pr{X̂ = 1|X = 0} ≤ 1

3
, where X̂ is the output of the decision rule.

(a) Find the likelihood ratio L(y) for y ∈ {0, 1, 2, 3}

Using the binomial distribution for p = 1
3

and p = 2
3
, we compute

L(y) =

(
3
y

)
(2
3
)y(1

3
)3−y(

3
y

)
(1
3
)y(2

3
)3−y

=


1
8

y = 0
1
2

y = 1

2 y = 2

8 y = 3

(b) Given X = 0, find the values that L(Y ) takes on and the associated probabilities.

We first find the distribution of Y , then combine it with the result from the previous part.
With p = 1

3
, Y follows a binomial distribution with parameters n = 3 and p = 1

3
.

Pr{Y = y} =


8
27

y = 0
12
27

y = 1
6
27

y = 2
1
27

y = 3

=⇒ L(Y ) =


1
8

w.p. 8
27

1
2

w.p. 12
27

2 w.p. 6
27

8 w.p. 1
27

(c) Construct the Neyman-Pearson decision rule.

We seek to find c and γ such that under H0,

Pr{L(Y ) > c}+ γ Pr{L(Y ) = c} =
1

3

From the distribution of L(Y ) in the previous part, we find that c = 1
2

and γ = 1
6
. The

optimal decision rule is then

1. if Y ∈ {2, 3}, choose X̂ = 1

2. if Y = 1, X̂ = 1 with probability 1
6

and X̂ = 0 with probability 5
6
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3. if Y = 0, X̂ = 0
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7 Bacteria LLSE [11 points]

We have a colony of bacteria with initial population X ∼ Poisson(λ). Overnight, each bacterium
produces a Poisson (λ) number of offspring independently of the others before it passes away. Let
Z be the number of bacteria at beginning of the next day.

Mathematically, we can represent this process by letting X ∼ Poisson(λ), Y1, Y2, . . . ∼iid Poisson(λ)
independent of X, and Z =

∑X
i=1 Yi.

Compute L[X|Z].

Hint: The law of total variance, var(Y ) = E[var(Y |X)] + var(E[Y |X]), may be helpful.

Recall that

 L[X|Z] = E[X] +
cov(X,Z)

var(Z)
(Z − E[Z])

We compute each of these quantities in turn. Note that E[X] = λ as the mean of a Poisson

distribution and E[Z] = E
[∑X

i=1 Yi

]
= E[X] E[Y1] = λ2 by Wald’s identity. For the covariance,

observe

cov(X,Z) = E[ZX]− E[Z] E[X] = E[X E[Z|X]]− λ3 = E[λX2]− λ3 = λ2

Finally, using the law of total variance, we can compute

var(E[Z|X]) = var(λX) = λ3

E[var(Z|X)] = E

[
var

(
X∑
i=1

Yi|X

)]
= E [X var(Y1)] = λ2

var(Z) = var(E[Z|X]) + E[var(Z|X)] = λ2 + λ3

where in the calculation of E[var(Z|X)] we exploit the independence of the different Yi. Putting
it all together, we get

 L[X|Z] = λ +
1

1 + λ
(Z − λ2)

=
Z + λ

1 + λ
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8 Filter Finale [4 + 5 + 6 points]

Consider the system
Xn = aXn−1 + Vn

Yn = Xn + Wn

n ≥ 1

where X0 is zero mean, (Vn)n≥1 ∼iid N (0, σ2
v), and (Wn)n≥1 ∼iid N (0, σ2

w), all independent of each

other. In class, we have seen the Kalman Filter, which estimates Xn given (Y1, . . . , Yn), or X̂n|n, as
observations stream in. We now wish to work with the Kalman Predictor, which estimates Xn+1

given (Y1, . . . , Yn), or X̂n+1|n. The update equations are shown below (with one missing part). Note
that kn represents the usual Kalman Filter gain.

X̂n+1|n ← aX̂n|n−1 + kn · 1

σ2
n+1|n ← a2σ2

n|n + σ2
v

kn ← σ2
n|n−1 ·

(
σ2
n|n−1 + σ2

w

)−1

σ2
n|n ← (1− kn)σ2

n|n−1

(a) Find the linear innovation Ỹn = Yn − L[Yn|Y1, . . . , Yn−1]. Express your answer in terms of Yn

and X̂n|n−1.

Answer:
(
Yn − X̂n|n−1

)
Ỹn = Yn − L[Yn|Y1, . . . , Yn−1]

= Yn − L[Xn + Wn|Y1, . . . , Yn−1]

= Yn − L[Xn|Y1, . . . , Yn−1]

= Yn − X̂n|n−1

(b) Show that aỸn fills blank 1 .

Note that

X̂n+1|n = L[Xn+1|Y1...Yn]

= L[aXn + Wn|Y1...Yn]

= aL[Xn|Y1...Yn]

= a(L[Xn|Y1...Yn−1] + L[Xn|Yn − L[Yn|Y1...Yn−1]])

= a(X̂n|n−1 + knỸn)

Hence, aỸn fills blank 1 .

(c) Suppose X0 = 0, a = 1, and σ2
v = σ2

w = 2. Initialize X̂1|0 = 0 and σ2
0|0 = 0. Use the update

equations above to express X̂3|2 as a linear function of Y1 and Y2.
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Answer: X̂3|2 = 1
5
Y1 + 3

5
Y2.

First, let’s find X̂2|1.

σ2
1|0 = a2σ2

0|0 + σ2
v = 2

k1 = σ2
1|0(σ

2
1|0 + σ2

w)−1 =
1

2

X̂2|1 = aX̂1|0 + k1aỸ1

= aX̂1|0 + k1aY1 − k1aX̂1|0

=
1

2
Y1

Now computing X̂3|2.

σ2
1|1 = (1− k1)σ

2
1|0 = 1

σ2
2|1 = a2σ2

1|1 + σ2
v = 3

k2 = σ2
2|1(σ

2
2|1 + σ2

w)−1 =
3

5

X̂3|2 = aX̂2|1 + k2aỸ2

=
1

2
Y1 +

3

5
(Y2 − X̂2|1)

=
1

5
Y1 +

3

5
Y2


