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Rules.

• Please bubble in your answers FULLY and write all numerical answers clearly.
Answers that are not legible or clearly bubbled in may not get credit.

• You have 70 minutes to complete the exam. (DSP students with X% time accommodation
should spend 70 ·X% time on the exam).

• This exam is not open book. You may reference three double-sided handwritten sheets of
paper. No calculator or phones allowed.

• Collaboration with others is strictly prohibited. If you are caught cheating, you will receive a
0 on the final and will face disciplinary consequences.

• Write in your SID on every page to receive 1 point.

Problem points earned out of

SID 1

Problem 1 14

Problem 2 14

Problem 3 10

Problem 4 10

Problem 5 14

Problem 6 19

Problem 7 12

Problem 8 14

Problem 9 18

Total 126
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1 Random Cut of Random Graph [14 points]

Recall that a cut of a graph G is a subset of vertices T ⊆ G, and an edge (i, j) is said to be across
the cut T if and only if exactly only one of its endpoints i or j belongs to T .

Let G ∼ G(100, 1/4) be an Erdős–Rényi random graph on 100 vertices, in which each edge appears
independently with probability 1/4. We construct a random cut of G by selecting each vertex of G
with probability 1/3. Find the expected number of edges that cross this random cut of the random
graph G.

⃝ 400.

⃝ 450.

⃝ 500.

⃝ 550.

⃝ 600.

⃝ None of the above.

2 Vogel im Käfig [14 points]

A bird lives on the integers Z. It starts at 0 at time 0. At each time step, it jumps one step left or
right with probability 1

2
each. In other words, if Xn is its position at time n, then Xn+1 = Xn + 1

w.p. 1
2
and Xn−1 w.p. 1

2
. If pn is the probability that the bird is outside of the interval [−

√
n,

√
n]

at time n, find limn→∞ pn.

Give a numerical answer to two decimal places. You may use these following values of Φ(·), the
standard normal CDF: Φ(−2) ≈ 0.02, Φ(−1) ≈ 0.16, Φ(−0.5) ≈ 0.31, Φ(0.5) ≈ 0.69, Φ(1) ≈ 0.84,
Φ(2) ≈ 0.98.
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3 Poisson Arrivals [10 points]

Consider a Poisson process (Nt)t≥0 with rate λ = 1. For i ∈ Z+, let Ti be the time of the ith arrival.

(a) Find E[T3 | N(1) = 2]

(b) Find E[T2 | T3 = 1]. Format your answer in reduced fraction form.



Final Page 4 of 11 Student ID:

4 Reversible CTMCs [10 points]

For each of the following transition rate diagrams, select true if it describes a reversible continuous-
time Markov chain and false otherwise.

1 2 3 · · ·
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⃝ True ⃝ False
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⃝ True ⃝ False
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⃝ True ⃝ False
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5 German Tank Problem [14 points]

A bin contains a set of N balls with serial numbers 1, 2, . . . , N , where N is unknown. The goal is
to estimate N based on a sample of the serial numbers. (Recall that this is the same setting as the
German Tank problem discussed in class.) Suppose X is a randomly sampled serial number, i.e.
X can take any of the serial numbers from 1 to N with equal probability; if we have a sample of
n ≤ N serial numbers X1, X2, . . . , Xn sampled at random and without replacement from the bin,
and our observed numbers for n = 4 are the sequence {33, 7, 100, 44}.

(a) What is the Maximum Likelihood Estimate (MLE) of N given our observed sequence {33, 7,
100, 44} for n = 4?

(b) It is possible to show that the expected value of the MLE of N given n ≤ N random samples

without replacement is given by n(N+1)
n+1

. Use this to construct an unbiased estimator of N for

n = 4 given the observed sequence {33, 7, 100, 44}. (Recall that an unbiased estimator, X̂ of
a random variable X is such that E[X̂] is equal to E[X].)

(c) In a Bayesian setting, suppose the prior distribution on N is Geometric(p) with p = 0.01.
What is the MAP estimate for N given n = 4 and the observed sequence {33, 7, 100, 44}?
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6 Hypothesis Testing [19 points]

Recall the optimization problem solved by the Neyman-Pearson rule:

max
X̂

PCD := Pr
(
X̂ = 1 | X = 1

)
subj. to PFA := Pr

(
X̂ = 1 | X = 0

)
≤ β

for some fixed β ∈ [0, 1].

(a) Suppose that Y | {X = 0} and Y | {X = 1} have the same distribution (e.g. Y is independent
of X). Which best describes the relationship between the PFA and PCD for the Neyman-
Pearson rule?

⃝ PFA ≥ PCD, but we cannot determine if equality holds without knowing the distribution
of Y and/or β.

⃝ PFA = PCD.

⃝ PFA ≤ PCD, but we cannot determine if equality holds without knowing the distribution
of Y and/or β.

⃝ PFA = 1− PCD.

⃝ We cannot determine without further information.

(b) Suppose that Y | {X = 0} ∼ N(0, 1) and Y | {X = 1} ∼ N(0, 2). We solve for the Neyman-
Pearson rule with the constraint that our PFA cannot exceed β = 0.3. Which of the following
best describes the shape of the likelihood ratio L(y)?

⃝ monotonically increasing

⃝ monotonically decreasing

⃝ increasing and then decreasing

⃝ decreasing and then increasing

⃝ none of the above
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Now suppose that we have the following conditional distributions for Y :

Y | {X = 0} =


0 w.p. 1/6

1 w.p. 1/3

2 w.p. 1/2

Y | {X = 1} ∼ Uniform{0, 1, 2}

Compute the Neyman-Pearson decision rule X̂(Y ) given the constraint that the PFA cannot exceed
β = 2/5. Then, compute the following values. Format your answers as fractions in reduced form.

(c) Pr
(
X̂ = 1 | Y = 0

)

(d) Pr
(
X̂ = 1 | Y = 1

)

(e) Pr
(
X̂ = 1 | Y = 2

)
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7 ABC’s [12 points]

Let X, Y , and Z be jointly Gaussian random variables with covariance matrix3 2 0
2 3 2
0 2 3


and mean vector [0, 126, 0]. We can write E[Y |X,Z] as a+ bX + cZ.

Compute a.

Compute b.

Compute c.

8 Hilbert’s 25th Problem [14 points]

We will work in the Hilbert space of real-valued random variables H, equipped with the usual inner
product ⟨X, Y ⟩ = E(XY ). Determine whether the following statements are true or false in general.

(a) If X is orthogonal to 1, then X is zero-mean.

⃝ True ⃝ False

(b) The norm ∥X∥ =
√

⟨X,X⟩ always equals the standard deviation σX =
√
var(X).

⃝ True ⃝ False

(c) X and Y are independent if and only if they are orthogonal.

⃝ True ⃝ False

(d) Suppose cov(X, Y ) ̸= 0. Then proj{X,Y }(Z) ̸= projX(Z) + projY (Z).

⃝ True ⃝ False



Final Page 9 of 11 Student ID:

9 Estimate the Right Option [18 points]

(a) Which of the following does the expectation of a random variable always minimize (if the
expectation exists)?

⃝ mean squared error, i.e. argminx∈R E
[
(X − x)2

]
= E[X].

⃝ mean absolute error, i.e. argminx∈R E
[
|X − x|

]
= E[X].

⃝ probability of error, i.e. argminx∈R P(X ̸= x) = E[X].

⃝ none of the above

(b) Which of the following is true when we estimate X from Y ?

⃝ The MMSE is always strictly better than the LLSE in terms of mean squared error.

⃝ If X and Y are both Gaussian, the MMSE equals the LLSE.

⃝ We can still use the MMSE and the LLSE if the relationship between X and Y is
unknown.

⃝ None of the above.

(c) Which of the following is the estimation error of L[X|Y ] always orthogonal to?

⃝ all functions of Y

⃝ all linear functions of Y but not all functions of Y in general

⃝ all linear functions of X

⃝ none of the above

(d) Suppose that Y and Z are zero-mean random variables. Decide which of the following state-
ments are true in general. Select all correct options.

□ L(X | Y, Z) = L(X | Y ) + L(X | Z).
□ If Y and Z are orthogonal, then L(X | Y, Z) = L(X | Y ) + L(X | Z).
□ If X = aY + bZ, then L(X | Y, Z) = L(X | Y ) + L(X | Z).
□ None of the above.

(e) You want to determine the value of X ∼ N (0, 1). However, your measurements are imprecise:
you observe Y1 and Y2, where each Yi is X plus some independent noise Zi ∼ N (0, 1). Find
the MMSE estimate of X given Y1 = −4 and Y2 = 10.

⃝ 0

⃝ 1

⃝ 2

⃝ 3

⃝ 6
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Use this space for scratch work!



Final Page 11 of 11 Student ID:

Use this space for scratch work!


