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• You have 5 minutes to read the exam and 175 minutes to complete this exam.

• The maximum you can score is 134, but 100 points is considered perfect.

• The exam is not open book, but you are allowed to consult the cheat sheet that we provide.
No calculators or phones. No form of collaboration between the students is allowed. If
you are caught cheating, you may fail the course and face disciplinary consequences.

• Show all work to get any partial credit.

• Take into account the points that may be earned for each problem when splitting your
time between the problems.

Problem points earned out of

Problem 1 45

Problem 2 20

Problem 3 10

Problem 4 12

Problem 5 7

Problem 6 20

Problem 7 20

Total 100 (+34)
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Problem 1: Answer these questions briefly but clearly. [45]

1. Maximum Variance [5]
Let X be a random variable that takes value between 0 and c, where c is positive-valued
(i.e. P(0 ≤ X ≤ c) = 1). What is the maximum value of the variance of X? Provide an
example which achieves this bound. You do not need to prove that your bound (if correct)
is tight.

2. Min and Max of Uniform Distribution [5] Let X and Y be independent random
variables distributed as Uniform[0, 1]. Let U = min{X,Y } and V = max{X,Y }. Find
cov(U, V ).

3. Correlation Coefficients [5]
Let X,Y, Z be jointly Gaussian zero–mean random variables such that X is conditionally
independent of Z given Y . Given that the correlation coefficients of (X,Y ) and (Y,Z) are
ρ1 and ρ2, find the correlation coefficient of (X,Z). Hint: The answer is in a fairly simple
form; use the law of iterated expectation.
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4. Short Questions (Justify, no points for only answer.) [6]

(a) True or False? For Zero Mean Jointly Gaussian RVs X,Y and Z, if L(X|Y, Z) =
L(X|Y ) + L(X|Z), then Y and Z are independent RVs.

(b) If X is a Poisson Process of rate λ and has N arrivals in (0, T ), what is the joint
distribution of the first N arrival times?
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5. CTMC [7]
Consider the CTMC shown below. Write out the transition matrix, find the stationary
distribution and then find the corresponding DTMC which has the same stationary dis-
tribution as this chain.

A B

C

6

6 2

2

4



6. Deterministic Poisson Splitting [5]

Customers arrive at a store in a Poisson process, N(t), (t > 0), with rate λ. There are
two queues, Q1 and Q2. Instead of random assignment to the queues, the first customer
is deterministically assigned to Q1, the next is assigned to Q2, and so on; that is, the
customers are assigned alternately to the two queues. Are the arrival processes to the
individual queues Poisson? (If yes, provide the rate of the process. If no, show why not.)

7. Petersburg Revisited [7]

Recall the St. Petersburg “paradox” example from lecture. Formally, let X be a random
variable representing the payoff from a random game such that for i = 1, ..., P (X = 2i) =
1
2i

. In lecture, we showed that E[X] is infinite, but this does not seem to be a reasonable
way to model the “fair price” of the game. Here, we explore a different approach. Now,
let Xk be i.i.d. realizations of this game at time step k. At each time step, according to
some fixed c ∈ R, define

Sn =
n∏

i=1

Xi

c

(a) What is the distribution of log2Xi ? (Specify parameters, if any. No justification
needed.)
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(b) Show that E[log2(Xi)] = 2,∀i. If needed, use without proof that
∑∞

i=1
i
2i

= 2.

(c) Show that limn→∞ log2(Sn) is either −∞ or∞, w.p. 1 according to if c < c∗ or c > c∗

for some fixed c∗. What is this value c∗?
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8. Independent Sum Entropy [5]

Let X1, ..., Xn be independent random variables. Let Y =
∑n

i=1Xi.

(a) Argue that ∀i, H(Y ) ≥ H(Xi).

(b) Give an example where H(Y ) =
∑n

i=1H(Xi).
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Problem 2: Random Graphs and Markov Chains [20]

Assume N ≥ 3 is a fixed positive integer and G0 is a graph on N vertices {1, 2, . . . , N} with no
edges (empty graph). At each time step n ≥ 1, starting from the graph Gn−1, we pick a pair
(i, j), 1 ≤ i < j ≤ N uniformly at random among the

(
N
2

)
such pairs. Then, with probability

1− p, we do nothing, and with probability p, we alter the edge between vertices i and j; that is,
if there is an edge between i and j, we remove it and if there is not an edge, we place an edge.
Here, p ∈ (0, 1) is fixed. Let Gn be the resulting graph. We continue this process inductively,
i.e. we generate G1 from G0, then G2 from G1, and so on.

1. Argue that (Gn : n ≥ 0) is a Markov Chain. What is the state space? What is the size of
this state space? What are the transition probabilities?

2. Classify this chain in terms of its periodicity, reducibility, and whether it is transient,
positive recurrent or null recurrent (Justify your answers for full credit).
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3. What are the stationary distribution(s) of this Markov Chain? [Hint: Show that the Erdős–
Rényi distribution G(N, q) with an appropriate value of q is the stationary distribution.]

4. Assume that N = 3. Let T be the first time such that GT is the complete graph (the
graph on 3 vertices with all the 3 possible edges present). Find E(T ).
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Problem 3: MAP with Gaussians [10]

A disease has 2 strains, 0 and 1, which occur with prior probability p0 and p1 = 1−p0 respectively.
For both parts of this problem, you are allowed to leave your answer in terms of Φ(x), the CDF
of the standard normal distribution.

1. A noisy test is developed to find which strain is present for patients with the disease. Let
X ∈ {0, 1} be the random variable which denotes the strain. The output of the test is a
random variable Y1, such that Y1 = 5− 4X +Z1, where Z1 ∼ N (0, σ2) and is independent
of the strain X. Give a MAP decision rule to output X̂, your best guess for X, given Y1,
and compute P(X̂ 6= 0|X = 0).

2. A medical researcher proposes a new measurement procedure: he observes Y1 as done
previously, and in addition, “creates” a new measurement, Y2 = Y1 + Z2. Assume Z2 ∼
N (0, σ2) is independent of X and Z1. Now, find the MAP rule in terms of the joint
observation (y1, y2) and compute P(X̂ 6= 0|X = 0).
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Problem 4: Hypothesis Testing with Gaussians [12]
For this problem also, you may leave your answer in terms of the Guassian CDF Φ(x).

1. We are told that a random variable X is either N (0, 1) (null hypothesis) or N (10, 1)
(alternate hypothesis). We want the probability of false alarm to be no more than 2.5%.
What is the Neyman-Pearson optimal test? What is the probability of correct detection
for this threshold?

2. Now, we are told that a random variable Y is either N (0, 1) (null hypothesis) or N (0, 2)
(alternate hypothesis). We want the probability of false alarm to be no more than 5%.
What is the Neyman-Pearson optimal test? What is the probability of correct detection
for this threshold?
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Problem 5: Gaussian Product CLT [7]

Let X1, ...., Xn
i.i.d.∼ Lognormal(µ, σ). Let Yk := (Πk

i=1Xi)
1/k. Recall: if X is log-normally

distributed, then ln(X) is N (µ, σ).

1. Find E[ln(Yk)].

2. Find a lower bound on n such that P(| ln(Yn)− E[ln(Yn)]| > 0.01) < 0.05. You may leave
your answer in terms of Φ(x), the normal CDF.
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Problem 6: LLSE and Kalman Filter [20]

Consider a sensor network comprising n sensors that take noisy measurements of a temperature
variable X as follows: Yi = X +Wi, where X ∼ N (0, 10) and Wi’s are i.i.d. N (0, 1) that model
the noise in the system.

1. Let X̂LLSE = α1Y1 +α2Y2 + . . .+αnYn. Find αi for i = {1, . . . , n}. (Hint: Do it for n = 2
first and then generalize).

2. Suppose n = 2. I want to form L[X|Y1, Y2] in an online fashion by first considering Y1 and
then Y2 as follows:

L[X|Y1, Y2] = L[X|Y1] + L[X|Ỹ2].
What is Ỹ2? Draw a geometric picture relating Y1, Y2 and Ỹ2.

3. Now I want to estimate X recursively by taking the measurements Y1, Y2, . . . , Yn in an
online fashion using a Kalman Filter based approach. Note that the state-space equations
degenerate to:

Xn = Xn−1,

Yn = Xn +Wn

We will use the usual notation seen in lecture. X̂n|n is the best estimate of Xn given

Y1, Y2, . . . , Yn. X̂n|n−1 is the best estimate of Xn given Y1, Y2, ...Yn−1 and σ2n|n = E((Xn−
X̂n|n)2), etc.
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Suppose I initialize X̂1|0 = 0 and σ21|0 = 10 (i.e, variance of X) in the Kalman equations:

X̂n|n = X̂n|n−1 + kn(Yn − X̂n|n−1)

kn =
σ2n|n−1

σ2n|n−1 + σ2w

σ2n|n = σ2n|n−1(1− kn)

(a) What are X̂1|1, σ
2
1|1, X̂2|2, and σ22|2?

(b) In the limit as n→∞, what are kn and σ2n|n?
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Problem 7: HMMs and EM [20]

1. There are two identical-looking coins A and B whose biases (probability of Heads) are
θA = 0.4 and θB = 0.8 respectively. Let Xk be the coin at time step k. A Markov Chain
with transition probabilities given below describes the coin-picking process: P (Xk+1 =
A|Xk = B) = 0.2, P (Xk+1 = B|Xk = A) = 0.3 for k = {0, 1. . . . , }. Now, let the initial
state X0 be A. At each time step, we observe the result of flipping the current coin
(without knowing which coin it was). The observed sequence of tosses is H,T,T.

(a) What is the most likely sequence of coin labels picked?

(b) What is the most likely coin label corresponding to the second toss? Is it consistent
with the answer in (a)? Does it need to be? Explain.
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2. Now suppose that you do not know the true biases of the two coins and want to estimate
them. At each time step, you pick one of the two coins equally at random and toss it
once and observe whether it is Heads or Tails. You then replace the coin and repeat the
experiment 5 times. Suppose you observe H, T, T, H, H.

(a) Using the Hard EM algorithm with initial guess θA = 0.4, θB = 0.8, what will be your
converged estimates of the biases of the coins?

(b) Now you use the Soft EM algorithm with the same initial guesses. What will be the
estimates for θA, θB after one iteration?
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