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Rules.

• Please bubble in your answers FULLY and write all numerical answers clearly.
Answers that are not legible or clearly bubbled in may not get credit.

• You have 70 minutes to complete the exam. (DSP students with X% time accommodation
should spend 70 ·X% time on the exam).

• This exam is not open book. You may reference three double-sided handwritten sheets of
paper. No calculator or phones allowed.

• Collaboration with others is strictly prohibited. If you are caught cheating, you will receive a
0 on the final and will face disciplinary consequences.

• Write in your SID on every page to receive 1 point.

Problem points earned out of

SID 1

Problem 1 14

Problem 2 14

Problem 3 10

Problem 4 10

Problem 5 14

Problem 6 19

Problem 7 12

Problem 8 14

Problem 9 18

Total 126
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1 Random Cut of Random Graph [14 points]

Recall that a cut of a graph G is a subset of vertices T ⊆ G, and an edge (i, j) is said to be across
the cut T if and only if exactly only one of its endpoints i or j belongs to T .

Let G ∼ G(100, 1/4) be an Erdős–Rényi random graph on 100 vertices, in which each edge appears
independently with probability 1/4. We construct a random cut of G by selecting each vertex of G
with probability 1/3. Find the expected number of edges that cross this random cut of the random
graph G.

⃝ 400.

⃝ 450.

⃝ 500.

⃝ 550.

⃝ 600.

⃝ None of the above.

The answer is 550 .

We write n = 100, p = 1
4
, and q = 1

3
. Any particular cut of size k has k(n− k) possible crossing

edges; each edge appears w.p. p, so the expected number of crossing edges is k(n− k)p. Then,
by the law of total expectation, we condition on the size of the random cut to find

n∑
k=0

(
n

k

)
qk(1− q)n−k · k(n− k)p

= n(n− 1)pq(1− q)
n∑

k=0

(n− 2)!

(k − 1)!(n− k − 1)!
qk−1(1− q)n−k−1

= n(n− 1)pq(1− q)

= 100× 99× 1

4
× 2

9
.

Alternatively, let Ci,j be the event that (i, j) is a crossing edge. Note that P(Ci,j) = P(C1,2) =
1
9
: an edge between i and j exists w.p. 1

4
, and the two vertices are on opposite sides of the cut

w.p. 2(1
3
)(2

3
) = 4

9
, independently of the edge existing. Then, by the linearity of expectation,

E

(∑
i<j

1Ci,j

)
=
∑
i<j

E(1Ci,j
) =

(
100

2

)
P(C1,2) =

100× 99

2
× 1

9
= 550.
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2 Vogel im Käfig [14 points]

A bird lives on the integers Z. It starts at 0 at time 0. At each time step, it jumps one step left or
right with probability 1

2
each. In other words, if Xn is its position at time n, then Xn+1 = Xn + 1

w.p. 1
2
and Xn−1 w.p. 1

2
. If pn is the probability that the bird is outside of the interval [−

√
n,

√
n]

at time n, find limn→∞ pn.

Give a numerical answer to two decimal places. You may use these following values of Φ(·), the
standard normal CDF: Φ(−2) ≈ 0.02, Φ(−1) ≈ 0.16, Φ(−0.5) ≈ 0.31, Φ(0.5) ≈ 0.69, Φ(1) ≈ 0.84,
Φ(2) ≈ 0.98.

The answer is 0.32 .

Let us write Xn+1 = Xn + Yn, where Yn are i.i.d. Rademacher random variables, which are ±1
with probability 1

2
each. Observing that Xn =

∑n−1
k=0 Yk, by the Central Limit Theorem,

1√
n
Xn =

1√
n

n−1∑
k=0

Yk
d→ N (0, 1).

Note that Rademachers have mean 0 and variance 1. Then

pn = P(|Xn| >
√
n) = P

(∣∣∣∣Xn√
n

∣∣∣∣ > 1

)
= P

(∣∣∣∣∣ 1√
n

n−1∑
k=0

Yk

∣∣∣∣∣ > 1

)
→ P(|Z| > 1) = 2Φ(−1)

for Z ∼ N (0, 1).



Final Page 4 of 15 Student ID:

3 Poisson Arrivals [10 points]

Consider a Poisson process (Nt)t≥0 with rate λ = 1. For i ∈ Z+, let Ti be the time of the ith arrival.

(a) Find E[T3 | N(1) = 2]

By the memoryless property, E[T3 | N(1) = 2] = 1 + E[T1] = 1 + λ−1 = 2

(b) Find E[T2 | T3 = 1]. Format your answer in reduced fraction form.

By part (b), T2 is the maximum of two uniform random variables between 0 and s. Thus,
if 0 ≤ x ≤ s,

FT2|T3=s(x) = Pr(T2 ≤ x | T3 = s) =
(x
s

)2
and

fT2|T3=s(x) =
2x

s2
1{0 ≤ x ≤ s}.

Finally,

E[T2 | T3 = s] =

∫ s

0

2x2

s2
dx =

2s

3
.

Therefore, A = 2, B = 3



Final Page 5 of 15 Student ID:

4 Reversible CTMCs [10 points]

For each of the following transition rate diagrams, select true if it describes a reversible continuous-
time Markov chain and false otherwise.

1 2 3 · · ·
1

2

2

3

3

4

⃝ True ⃝ False

False. The harmonic series diverges, so no probability distribution can satisfy detailed balance.
Alternatively, the embedded jump chain is the classic symmetric reflected random walk on Z,
which does not have a stationary distribution by its null recurrence.

0 1

2

34

5

1

2

1
2

1
2

1

2

1
2

1
2

⃝ True ⃝ False

False. The unique stationary distribution, which is uniform, fails to satisfy detailed balance.

0 1 2 3 · · · 99 1001 1 1 1 1 1

1

1

1

· · ·

1

⃝ True ⃝ False

True. The stationary distribution with all mass in state 100 satisfies detailed balance vacuously.
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5 German Tank Problem [14 points]

A bin contains a set of N balls with serial numbers 1, 2, . . . , N , where N is unknown. The goal is
to estimate N based on a sample of the serial numbers. (Recall that this is the same setting as the
German Tank problem discussed in class.) Suppose X is a randomly sampled serial number, i.e.
X can take any of the serial numbers from 1 to N with equal probability; if we have a sample of
n ≤ N serial numbers X1, X2, . . . , Xn sampled at random and without replacement from the bin,
and our observed numbers for n = 4 are the sequence {33, 7, 100, 44}.

(a) What is the Maximum Likelihood Estimate (MLE) of N given our observed sequence {33, 7,
100, 44} for n = 4?

We compute the likelihood as

P(X1 = 33, X2 = 7, X3 = 100, X4 = 44 | N = n) = 1{max{x1, x2} ≤ n} 1(
n
4

) .
We seek to find

argmax
n

1{max{x1, x2, x3, x4} ≤ n} 1(
n
4

) = argmin
n≥max{x1,x2,x3,x4}

(
n

4

)
This function is increasing over that interval, so the MLE estimate is at the left endpoint of the
interval, 100 .

(b) It is possible to show that the expected value of the MLE of N given n ≤ N random samples

without replacement is given by n(N+1)
n+1

. Use this to construct an unbiased estimator of N for

n = 4 given the observed sequence {33, 7, 100, 44}. (Recall that an unbiased estimator, X̂ of
a random variable X is such that E[X̂] is equal to E[X].)

From the problem statement, we know that

E[N̂MLE] =
n(N + 1)

n+ 1

n+ 1

n
E[N̂MLE] = N + 1

n+ 1

n
E[N̂MLE]− 1 = N

Which shows that the LHS of the equation is the unbiased estimator E[N̂unbiased] of N .

N̂unbiased =
n+ 1

n
N̂MLE − 1.
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Plugging in n = 4, we have:

N̂unbiased =
5

4
N̂MLE − 1 =

5

4
(100)− 1 = 124 .

(c) In a Bayesian setting, suppose the prior distribution on N is Geometric(p) with p = 0.01.
What is the MAP estimate for N given n = 4 and the observed sequence {33, 7, 100, 44}?

We use the posterior

argmax
n

P(N = n | X1 = 33, X2 = 7, X3 = 100, X4 = 44)

= argmax
n

P(X1 = 33, X2 = 7, X3 = 100, X4 = 44 | N = n)P(N = n)

= argmax
n

1{n ≥ 100} 1(
n
4

)(1− p)n−1p

=argmax
n

(n− 1) log(1− p)− log(n)− log(n− 1)− log(n− 2)− log(n− 3).

We notice that this is a decreasing function of n. Therefore, the value n that maximizes the
objective function is the smallest n satisfying n ≥ max{33, 7, 100, 44}, which is 100 .
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6 Hypothesis Testing [19 points]

Recall the optimization problem solved by the Neyman-Pearson rule:

max
X̂

PCD := Pr
(
X̂ = 1 | X = 1

)
subj. to PFA := Pr

(
X̂ = 1 | X = 0

)
≤ β

for some fixed β ∈ [0, 1].

(a) Suppose that Y | {X = 0} and Y | {X = 1} have the same distribution (e.g. Y is independent
of X). Which best describes the relationship between the PFA and PCD for the Neyman-
Pearson rule?

⃝ PFA ≥ PCD, but we cannot determine if equality holds without knowing the distribution
of Y and/or β.

⃝ PFA = PCD.

⃝ PFA ≤ PCD, but we cannot determine if equality holds without knowing the distribution
of Y and/or β.

⃝ PFA = 1− PCD.

⃝ We cannot determine without further information.

(b) is correct. As Y has the same distribution under {X = 0} and {X = 1}, we conclude that
the likelihood ratio L(y) will take on the constant value 1. This will cause the optimal decision
rule to be outputting Bernoulli(γ) for γ = β, which will cause the PFA and PCD to both be
exactly γ.

(b) Suppose that Y | {X = 0} ∼ N(0, 1) and Y | {X = 1} ∼ N(0, 2). We solve for the Neyman-
Pearson rule with the constraint that our PFA cannot exceed β = 0.3. Which of the following
best describes the shape of the likelihood ratio L(y)?

⃝ monotonically increasing

⃝ monotonically decreasing

⃝ increasing and then decreasing

⃝ decreasing and then increasing

⃝ none of the above

(d) is correct. The simplest solution is to graph the densities of Y | {X = 1} versus
Y | {X = 0}. The former distribution has a shorter peak and heavier tails, and both
distributions are symmetric about 0. we conclude that the likelihood ratio should have a
minimum y = 0 and increase as |y| increases, which is consistent with the likelihood rate
decreasing towards 0 and then increasing again.
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Otherwise, we can solve for L(y) analytically by dividing the normal pdfs:

L(y) =
(1/

√
2π · 2) exp(−y2/4)

(1/
√
2π) exp(−y2/2)

=
1√
2
exp

(
y2

4

)
Using the fact that z 7→ ez is monotonic, we conclude that L(y) is decreasing and then
increasing.
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Now suppose that we have the following conditional distributions for Y :

Y | {X = 0} =


0 w.p. 1/6

1 w.p. 1/3

2 w.p. 1/2

Y | {X = 1} ∼ Uniform{0, 1, 2}

Compute the Neyman-Pearson decision rule X̂(Y ) given the constraint that the PFA cannot exceed
β = 2/5. Then, compute the following values. Format your answers as fractions in reduced form.

(c) Pr
(
X̂ = 1 | Y = 0

)
(d) Pr

(
X̂ = 1 | Y = 1

)
(e) Pr

(
X̂ = 1 | Y = 2

)
We find

Pr
(
X̂ = 1 | Y = 0

)
= 1

Pr
(
X̂ = 1 | Y = 1

)
= 7/10

Pr
(
X̂ = 1 | Y = 2

)
= 0

Observe that the likelihood function is a decreasing function of y, so we can greedily add values
into our acceptance region. Always accepting for Y = 0 gives a PFA of 1/6, which is below our
constraint of β = 2/5, while always accepting for Y ∈ {0, 1} gives a PFA of 1/2, which is above
our constraint of β = 2/5. Thus, we choose to always accept when Y = 0, and then accept
with probability γ = (2/5− 1/6)/(1/3) = 7/10 when Y = 1, and always reject when Y = 2.
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7 ABC’s [12 points]

Let X, Y , and Z be jointly Gaussian random variables with covariance matrix3 2 0
2 3 2
0 2 3


and mean vector [0, 126, 0]. We can write E[Y |X,Z] as a+ bX + cZ.

Compute a.

E[E[Y | X,Z]] = E[a+ bX + cZ] = a = E[Y ].

Therefore, a = 126.

Compute b.

By the orthogonality principle, we know that Y − E[Y | X,Z] is orthogonal to X. This yields

E[(Y − 126− bX − cZ)X] = E[(Y − 126)X]− bE[X2]− cE[ZX]

= 2− 3b

= 0,

where we use the fact that X and Z are uncorrelated. Thus, b = 2
3
.

Compute c.

Similarly to the previous part,

E[(Y − 126− bX − cZ)Z] = E[(Y − 126)Z]− bE[XZ]− cE[Z2]

= 2− 3c

= 0.

Therefore, c = 2
3
. Alternatively, we can use symmetry to see that this answer should be the

same as the previous part.
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8 Hilbert’s 25th Problem [14 points]

We will work in the Hilbert space of real-valued random variables H, equipped with the usual inner
product ⟨X, Y ⟩ = E(XY ). Determine whether the following statements are true or false in general.

(a) If X is orthogonal to 1, then X is zero-mean.

⃝ True ⃝ False

True. X ⊥ 1 means that ⟨X, 1⟩ = E(X · 1) = E(X) = 0.

(b) The norm ∥X∥ =
√

⟨X,X⟩ always equals the standard deviation σX =
√
var(X).

⃝ True ⃝ False

False.
√
E(X2) = σX iff E(X2) = var(X), or E(X) = 0, which is not true in general.

(c) X and Y are independent if and only if they are orthogonal.

⃝ True ⃝ False

False. None of the Hilbert space conditions are strong enough to imply independence.

(d) Suppose cov(X, Y ) ̸= 0. Then proj{X,Y }(Z) ̸= projX(Z) + projY (Z).

⃝ True ⃝ False

False. Correlated random variables might still be orthogonal, in which case equality holds.
For example, let X, Y be jointly Gaussian with µX = 1, µY = −1, and covariance 1.
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9 Estimate the Right Option [18 points]

(a) Which of the following does the expectation of a random variable always minimize (if the
expectation exists)?

⃝ mean squared error, i.e. argminx∈R E
[
(X − x)2

]
= E[X].

⃝ mean absolute error, i.e. argminx∈R E
[
|X − x|

]
= E[X].

⃝ probability of error, i.e. argminx∈R P(X ̸= x) = E[X].

⃝ none of the above

(b) Which of the following is true when we estimate X from Y ?

⃝ The MMSE is always strictly better than the LLSE in terms of mean squared error.

⃝ If X and Y are both Gaussian, the MMSE equals the LLSE.

⃝ We can still use the MMSE and the LLSE if the relationship between X and Y is
unknown.

⃝ None of the above.

(c) Which of the following is the estimation error of L[X|Y ] always orthogonal to?

⃝ all functions of Y

⃝ all linear functions of Y but not all functions of Y in general

⃝ all linear functions of X

⃝ none of the above

(d) Suppose that Y and Z are zero-mean random variables. Decide which of the following state-
ments are true in general. Select all correct options.

□ L(X | Y, Z) = L(X | Y ) + L(X | Z).
□ If Y and Z are orthogonal, then L(X | Y, Z) = L(X | Y ) + L(X | Z).
□ If X = aY + bZ, then L(X | Y, Z) = L(X | Y ) + L(X | Z).
□ None of the above.

(e) You want to determine the value of X ∼ N (0, 1). However, your measurements are imprecise:
you observe Y1 and Y2, where each Yi is X plus some independent noise Zi ∼ N (0, 1). Find
the MMSE estimate of X given Y1 = −4 and Y2 = 10.

⃝ 0

⃝ 1

⃝ 2

⃝ 3

⃝ 6
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(1) a is correct. This directly comes from the Hilbert projection theorem as argminx∈R E
[
(X−

x)2
]
is the projection of X onto 1, which is ⟨X, 1⟩ = E[X].

b is incorrect. Consider the RV X that takes 0 w.p. 0.2, 1 w.p. 0.2, and 10 w.p. 0.6.
E[X] = 6.2 has a mean absolute error of 4.56. However, 10 has a mean absolute error of
3.8, which is lower.

c is incorrect. Consider the same example as above, where the mean 6.2 has a probability
of error of 1, but 10 has a probability of error 0.4, which is lower.

d is incorrect since a is correct.

(2) a is incorrect. If X and Y are JG, the estimation error of MMSE and LLSE are equal, so
it’s not strictly better.

b is incorrect as they need to be JG.

c is incorrect because we need to know cov(X, Y ) in the LLSE calculation and need to
know the expectation of X|Y to get the MMSE.

d is correct. since all other choices are indeed incorrect.

(3) b is correct. This directly comes from lecture. (Note that even if we interpret the term
linear to be distinguished from affine, b is still the only correct statement, since orthogo-
nality to all aY + b implies orthogonality to all aY .)

(4) None of the above are correct. The usual orthogonal update requires X, Y, Z all zero-mean
and Y, Z orthogonal. Here, we explore the importance of these conditions in making sure
L(X | Y ) + L(X | Z) avoids redundant projections onto 1 or onto Y .

a. Either counterexample below shows that option a is false as well.

b. Take X = Y + Z + 1. Then L(X | Y, Z) = X, while L(X | Y ) + L(X | Z) = X + 1
double counts the mean of X.

c. X is now zero-mean, but suppose X = Y = Z is not constant, so Y is not orthogonal
to Z. Then L(X | Y, Z) = X, but L(X | Y ) + L(X | Z) = 2X.

(5) The answer is 2 . Observe that X, Y1, Y2 are jointly Gaussian, so E(X | Y1, Y2) = L(X |
Y1, Y2). Let us orthogonalize the given information:

Ỹ1 = Y1 − E(Y1) = Y1

Ỹ2 = Y2 − L(Y2 | Ỹ1) = Y2 −
cov(Ỹ1, Y2)

var(Ỹ1)
Ỹ1 = Y2 −

1

2
Y1.

Note that var(Ỹ2) = var(1
2
X + Z2 − 1

2
Z1) =

1
4
+ 1 + 1

4
by centeredness and independence.
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Now, by orthogonal updates,

L(X | Y1, Y2) = L(X | Ỹ1, Ỹ2) = L(X | Ỹ1) + L(X | Ỹ2)

=
cov(X, Ỹ1)

var(Ỹ1)
Ỹ1 +

cov(X, Ỹ2)

var(Ỹ2)
Ỹ2

=
1

2
Y1 +

1

3

(
Y2 −

1

2
Y1

)
=

Y1 + Y2

3
.

Alternatively, we see that L(X | Y1, Y2) is a constant multiple of Y1 + Y2 by symmetry.
The constant factor a = 1

3
is determined by the orthogonality principle:

E((X − X̂) · Yi) = E([(1− 2a)X − a(Z1 + Z2)] · Yi)

= (1− 2a)E(X2)− aE(Z2
i )

= 1− 3a

= 0.


