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1 CAPTCHA [1 point]

Bubble in the selection corresponding to Professor Kannan Ramchandran.

The answer is (b).

2 Potpourri [T+ 7+ 7+ 7+ 8 + 7 + 10 points|

(a) Exponential Sampling [7 points]

Suppose you are able to generate values from U ~ Uniform[0,5]. How can you simulate and
sample values from an exponential distribution using U and Fx(z), where X ~ Exponential(\)?
Provide complete justification for full credit.

First, scale any value drawn from U by %, soU = %U ~ Uniform|0, 1]. This is because
P(U' < 2) =P(:U < z) = P(U < 5z) = x, showing +U ~ Uniform|0, 1].

Then the inverse CDF of X is Fy'(u) = —% In(1 — u). This means that if we draw some
u, from U’ ~ Uniform[0, 1] and compute z = Fy'(u,) = —3 In(1 — u,), it will be as if we
drew x from an exponential distribution.

This can be shown with the following proof: Let Y = F~'(U’). The CDF of YV is
Gly) = P(Y <y) =PU < F(y)) = F(y). The last equality follows from the CDF
of a uniform random variable. Hence, F~!'(U’) has CDF F. This method is known as
inverse transform sampling.
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(b) Gob ears! [7 points|

Sohom is watching the price of GBRS stock and notices that on each day, the stock either
doubles or halves in price with equal probability. If X,, is the price of the stock on day n, then

X 2X,, w.p. 1/2
ETLX, wop. 1)2.

2 n
Suppose Xy = 1. Using the Central Limit Theorem, find a 95% confidence interval for Xgo.
You may approximate a 95% confidence interval with 2 standard deviations above and below
the mean.

Observe that if P(X € [z, x2]) = P(log, X € [log, x1,log, x3]), so we can instead consider
IOgQ X100 = Z;lg(i Ri, where
1 p. 1/2
R, — +1 wp. 1/
-1 w.p. 1/2.
Using the Central Limit Theorem, we can approximate log, Xig0o as a normal distribution.
We compute

E[10g2 XIOO} =100 E[Rl] =0
var(logy, Xi90) = 100 var(R;) = 100
Recalling that a 95% confidence interval for N'(u, 02) is given by [u—20, u+20], we conclude

that log, X100 € [—20,20] with 95% confidence. Thus the confidence interval for X is
[2720’ 220] .

(c) Chernoff Bounding [7 points]

For a random variable X ~ Erlang(2,5), find the tightest upper bound on P(X > 1) given by the
Chernoff bound. As a reminder, Erlang(k, \) is equivalent to the sum of k i.i.d. Exponential(\)
random variables.

The MGF of an Exponentially distributed random variable with parameter X is (1 — £)~!

for t < A, so the MGF of an Erlang random variable is (1 — £)7*. The Chernoff bound
states that

PX>1)< (1 — é) B e "

We wish to find the value of ¢t between 0 and A which minimizes this expression. Taking
the derivative with respect to ¢ and setting it equal to zero, we have

2 AN AN
-(1—-= et=(1-- et
5! 5) 5)

2
21—
Y

O]
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Plugging back in ¢ = 3, our upper bound is

3\ 2 25
IP(X Z 1) S (1 — 5) 6_3 = 16_3.

(d) Entropic Kitchen [2 4 5 points]
The number of dishes X in Akshit’s sink at night is distributed as follows:

2 w.p. %
X=<4 wp. %
8 w.p. %

His roommate, Matt, either does all of the dishes (Y = 1) or none of them (Y = 0) according

to the following model:
v Bernoulli(2) if X <4
Bernoulli(3) if X > 4.

(i) Find H(X), the entropy of X.
(ii) Akshit comes home and finds that the dishes are done. Find H(X | Y = 1).

(i) X is uniform, so it has entropy log,|X| = log,(3).
(i)
1.2 9
PX=2|Y=1)=g5—F 3 T 1.=:
(3-5+t35+t535 5
1.2 92
P(X =4|Y =1) = 35 _Z
IR ESE ES T
1.1 1
P(X=8|Y=1)= 33 1
CEES B ST
2 ) 2 5 1
H(X |Y =1) = - log (5) + ¢ logy (5) + ¢ logy(5).

(e) Comparing Gaussians [4 + 4 points|
Answer True/False for the following two parts. If True, justify your answer. If False, provide a
counterexample.
(i) If X and Y are jointly Gaussian, do they have Gaussian marginal distributions?

(ii) Is the converse true? If X and Y both have Gaussian marginal distributions, are they
jointly Gaussian?
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(i) True; all linear combinations of jointly Gaussian random variables are Gaussian. This
means that both X and Y are Gaussian random variables (i.e. marginally Gaussian).

(ii) False. To construct a counterexample, we use the property that jointly Gaussian
random variables have a PDF according to the multivariate normal distribution. The
support of this is R?2. We are in search for a joint distribution that does not have full
R? support but is marginally Gaussian.

Consider U,V ~ N(0,1). Then define our distribution as follows.

w,|V)) i#U>0

Ixy(z,y) = {(U,—|VD if U < 0.

(f) Quadratic Estimation [7 points]

Given zero-mean random variables X and Y, find the best quadratic estimator Q[Y | X] if
E[X?®] = 0. Your answer can contain expectations of X and Y such as E[X] or E[XY?]. Be
sure to simplify completely and justify your work.

Finding the best quadratic estimator of Y given X is the same as projecting Y onto
span{1, X, X2}, using Hilbert’s projection theorem. For ease of projection, we orthogo-
nalize our basis. X is orthogonal to 1 because E[X| = 0, and similarly X? is orthogonal
to X as E[X?] = 0. However, X? is not necessarily orthogonal to 1 so we subtract off the
projection proj, (X?) = E[X?]. This gives us orthogonal basis {1, X, X? — E[X?|}.

Now, because our basis is orthogonal, we can project onto each basis component separately.
We compute

proj, (V) = E[Y]
=0
. ~ E[XY]
pl"OJX(Y) - E[XQ}
: ~ E[(X? - E[X?)Y]
PIO) x2_E[x2] (Y) = E[(X2 — E[X?])?Y]
E[X?Y] - E[X?| E[Y]
- E[X4] - 2E[X?2]2 + E[X?2]2
E[X?Y]
N E[X?] — E[X?]?

Putting it all together, our best quadratic estimator is

EXY], ,  EXY]

AT B R —woE

(X* - E[X?])
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(g) German Tank Problem [3 + 7 points]

Rohit is working for Allied intelligence during WWII. He is tasked with estimating N, the total
number of German tanks. Every so often, the troops capture a tank (and don’t release it) and
record its serial number, which run from 1 to N and are all distinct and equally likely to be
found. Suppose the army finds two distinct serial numbers X; and Xo.

(i) Find the MLE of N given X, Xs.

(ii) Suppose an expert says that the prior distribution is N ~ Geometric(p). Derive the
quadratic equation using the log likelihood to find the MAP of N given X7, Xs. If your
equation could produce a non-integral value, explain how you would fix this.

(a) We compute the likelihood as

1
P(X; =21, Xo =29 | N =n) = 1{max{x, x5} < n}m
2

We seek to find

1 , n . nn-1)
argmax 1{max{z, 22} <n}-— = argmin = argmin ——.
n (2) n>max{x1,z2} 2 n>max{z1,r2} 2

This function is increasing over that interval, so the MLE estimate is at the left

endpoint of the interval, | max{X;, X5} |

(b) We use the posterior

argmax P(N =n | X; = x9, Xy = x9)

=argmaxP(X; =29, Xo =25 | N =n)P(N =n)
1
=argmax 1{n > max{z, xg}}m(l —p)" 'p
" 2

=argmax(n — 1) log(1 — p) — log(n) — log(n — 1).

n

We can then use differentiation (and then round the solution up or down depending
on which is better). Calling the objective O, we have:

dO 1 1

= oe(l —p) — = —
dn og( P) n n-—1

0=n(n—1)log(l—p)—(n—1)—n.

=0
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Alternatively, one may realize that the expression

)" 'p

1 (1
T\t — P
()
is a decreasing function of n. Thus, similar to the reasoning in Part (i), the value n
that maximizes the objective function is the smallest n satisfying n > max{X;, X5},

so the answer is also n = max{Xj, Xy}, which is guaranteed to be an integer answer.
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3 AlexBot [3 + 5 4+ 5 + 3 points]

AlexBot is taking a random walk on the non-negative integers {0,1,2,...}. Let (X,)n,>0 be a
Markov chain, where X, is its position at time n. The bot is programmed to do the following at
each time step. At a state ¢ > 0, it goes to state i + 1 with probability p, state i — 1 w.p. ¢, and
stays in state i w.p. 1 —p — ¢, where p < ¢ and p + g < 1. At state 0, there is a toy cannon that
launches the bot onto a random state ¢ > 0 according to a distribution 7 with expectation ¢ < oo,
independent of any other event. In other words, the transition matrix P is given by

P ifi>0and j=i+1

q ifi>0and j=:i—1

U Y l—p—q ifi>0andj=1i
w(j)  ifi=0.

You may assume that 7(4) is nonzero for at least one i > 0.

a) Use the strong law of large numbers to show that from any state i, the bot would eventually
reach state 0 as time goes to infinity.

b) Find the expected amount of time for the bot to reach state 0, starting from any state i > 0.
Hint: What can you say about the relationship between expected time from state 1 to 0 and
the expected time from state k + 1 to k for k& > 07

¢) Find E[T], where T'=min{t > 0 : X; = 0 | Xy, = 0} is the first return time to state 0. Don’t
forget that riding the cannon also takes one time step, and recall that the expectation of 7 is c.

d) Which states of the Markov Chain, if any, are positive recurrent? Justify your answer, and show
irreducibility if necessary.

(a) Let (Yy)n>1 be the displacement of the bot at each time step starting from state . Since
(Y,)n>1 are iid, by the Strong Law of Large Numbers,
RS
lim —» V,=EYi]=¢q-(-1)+(1—-p—¢q)-04+p-1=p—q<0O.

n—oo M,
i=1

So, multiplying both sides by n,

n
lim g Y, = —o0.
n—00 £ T

1=

This means that the bot is eventually going to reach any state j < i, including state 0.

(b) Let E) be the expected amount of time to reach state 0 from state k. Since the random
walk is unbounded on the right side, the expected time to reach state k from state k41 is
constant for all £ by symmetry, so £y = kE, Vk.
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To put the argument formally, for every path py = (1, vy, v9,...,0) from state 1 to state 0
that takes ¢ steps, there is a path p, = (1 +k,v; + k,vo+ k, ..., k) from state k+ 1 to state
k that also takes t steps and has the same probability as pg, because the transition matrix
is shift-invariant in k£ for £ > 0. This mapping is a bijection, since all states in the path
increment by k. Thus, the expected time to go from state 1 to state 0 must be the same as
the expected time to go from state k + 1 to state k for all k£ > 0.

From first-step equations,
Ey=1+qEy+ (1 —p—q)E1 + pEs.
Plugging in Ey = 0 and E, = 2E;, we can find

1 .
EFi=—— andso FE;= ! i
q—p q—p

Let Y ~ 7 be the state that the bot is launched to. The expected return time conditioned
onY is
]E[T]Y]zl—l—Ey:l—l—L.
q—p
Thus, by the Law of Iterated Expectation,

E[T]:E[E[T|Y]]:E[l+£] :1+$E[Y]:1+Fcp.

From any state i, there is a path to state 0 through decrementing by 1 ¢ times. From state
0, there is a path to any state i by first taking the cannon to a state j with 7 (j) > 0, then
incrementing or decrementing by 1 until the bot is at state . Thus, all states commute and
the Markov chain is irreducible. Since state 0 has a finite expected return time, by the Big
Theorem, all states are positive recurrent.
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4 Caffeinated [2 4+ 2 4 7 points]

Catherine opens a coffee shop. Customers arrive according a Poisson process of rate .

(a) Let A be the event that Catherine got 100 sales in the first 100 minutes. Let 7} and T3 be the
times when Catherine gets her first sale and the 101st sale. What is the conditional expectation
of Ty given A?

(b) What is the conditional expectation of T given A?

(c) Aadil comes to help Catherine. Both Catherine and Aadil have Exponential service times
with rate p. Catherine always serves customers first, and Aadil will only serve a customer if
Catherine is busy. Assuming the coffee shop starts out empty at the start of the day, how long
is Aadil expected to wait before he serves a customer?

(a) E[T> | A] =100 + ; minutes by memorylessness.

(b) E[T} | A] = 1o¥ minutes by uniformity.

(c) Let T be the expected time before Aadil has to serve a customer, and let 7" = Y] + Y5,
where Y] represents the time of the first customer arrival, and Y5 the remaining time until
Aadil has to serve a customer. We know E[Y;] = +. After the first arrival, there are two
possible cases:

1. Customer 2 comes before customer 1 leaves, or

2. Customer 2 comes after customer 1 leaves.

Let A ~ Exponential(x) be the time before customer 1 leaves, and B ~ Exponential(\) be

the time before customer 2 arrives. Case 1 occurs with probability P(B < A) = F/\u’ and
case 2 with probability P(A < B) = X—’i_u By the Law of Total Expectation,

E[T] = E[Y1] + P(B < A)E[Y; | Case 1] + P(A < B)E[Y, | Case 2].
In case 1, E[Y; | Case 1] = min(A, B) = Flu In case 2, the system restarts the moment

customer 1 leaves, so E[Y; | Case 2] = ﬁ + E[T]. Plugging in values, we get

E[T] =L +

> o

I
A2
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5 Gamblers [7 4+ 4 4+ 5 points]

Kamyar and Zhiwei are at a casino and observe that gamblers arrive as a Poisson process with rate
1 to play on one of three slot machines. Arriving gamblers will taken any random machine that is
available, or leave immediately if none are available. Gamblers who get on the machines stay for
an Exponential(1) amount of time independently of each other.

(a) Consider a CTMC which tracks the number of machines that are available or in use. Find the
stationary distribution of this CTMC.

(b) Assume the chain has been running for a long time. If a gambler arrives, what is the probability
that the first machine is open and the gambler starts playing on it?

(¢) Suppose the casino has just opened, so all the slot machines are available. Set up equations to
find the expected amount of time before a gambler leaves immediately after arriving (due to all
machines being taken). You may leave the equations unsolved.

(a) We can consider a chain with four states, corresponding to the number of machines which
are in use. For each state ¢ where 1 < 3, we transition to state ¢« + 1 with rate 1. For each
state ¢ where ¢ > 0, we transition to state ¢ — 1 with rate 7.

1

Solving, we get m(i) = £m(0). Since the stationary distribution must sum to 1, 7(i) = 25

il
(b) We shall use the stationary distribution of the chain above. As long as one of the machines is
open, the probability of selecting the first machine is % by symmetry. Thus, the probability
is 1(1 —7w(3) =12 =2
3 316 — 16
(c) Let T; be the expected amount of time before a gambler is turned away given that ¢ machines
are currently in use. We have the system of equations

To =141
1 1 1
T1:§+§T0+§T2
1 2 1
Ty=-+-T'+-T
2 3—1-3 1+3 3
1 3 1

Ty = -+ 2T, + 20,
3=ty
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6 Random MCs [6 4+ 8 4+ 6 points]

Consider the Erdés—Rényi random graph G ~ G(n,p(n)) on the state space S := {0,...,n — 1},
where each edge in G exists independently with probability p(n). Every such random graph uniquely
describes a Markov chain on S as follows:

For vertices with positive (nonzero) degree deg(i), the transition probabilities are given by
1 . . .
—— if (i,j) € E(G
Pii,j) = { 0 D) € BG)
0 otherwise.

where E(G) denotes the edge set of G. Otherwise, when deg(i) = 0, P(i,i) = 1. For example,
consider the following Markov chain created using the process above:

11—
3
1 1
O 0 =HE S RO
\l 122
3 3
1
5\

In the following parts, a “random Markov chain” refers to the corresponding Markov chain from
sampling a random graph G ~ G(n,p(n)), not just the specific example given above. Justify any
properties or equations of Markov chains and random graphs that you use.

(a) As n — oo, find the probability that a random MC has at least one stationary distribution.
You may leave your answer in terms of p(n) if necessary.

(b) Consider a “typical” vertex i in a “typical” random graph G. Specifically, let |E(G)| be equal to
the expected number of edges in a random graph drawn from G(n,p(n)), and let deg(i) be the
expected degree of a randomly chosen vertex in G ~ G(n,p(n)). Compute the expected return
time in the associated random MC for vertex i: E;(7;") = E[min{t > 1: X; =i} | Xy = i].

(¢) Suppose that p(n) € o(2), i.e. as n — oo, n-p(n) — 0. As n — oo, find the probability
that a random MC is reversible. (Hint: Recall that this is the subcritical phase, where the
probability that G ~ G(n,p(n)) contains no cycles tends to 1 as n — co.)

(a) . Every finite-state Markov chain has at least one positive recurrent communicating class,
which will be stationary mass-supporting. Thus, any random MC surely has a stationary
distribution, and taking the limit as n — oo does not change this probability.

(b) [n]. If the stationary distribution 7 exists and is unique, i.e. the Markov chain is irreducible,
here because it is connected, then 7(i) - E;(T;") = 1. If the chain is also undirected, then
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(i) = d;ﬁé?, with the special case of m(i) = 1 if deg(i) = 0, i.e. n = 1. Thus,

1 2(E]  2E[}; 1{(j,k) is an edge}]
7(i) deg(i)  E[Binomial(n — 1,p(n))]
_2-(3) ()

(n—1)-p(n)

= n.

Ei(T;") =

Note. The problem statement accidentally left out the precondition that G is connected.
As such, the use of 7(i) - E;(T;") = 1 without the necessary justification would be accepted.

(c) [1]. Anirreducible Markov chain is reversible if (but not only if) its graph structure is a tree,
so a general Markov chain is reversible if its graph structure is a forest. In the subcritical
phase where p(n) € 0(%), the probability of G being a forest tends to 1 as n — oo, and the
probability of reversibility is at least the probability of G being a forest.

Remark. In fact, a stronger statement holds — a random MC is surely reversible. If two
states are not connected, then detailed balance is trivially satisfied, so we may consider
reversibility in each communicating class, or connected component. Then, for any (7, j),

deg(i) 1 1 deg(y) 1

B degl) 2B 2B deg(g) ) P

(i) - P(i,5) =

This also counts as a derivation of the formula (i) = dgiﬁ? for undirected Markov chains.

If a distribution satisfies detailed balance, then it must also be the stationary distribution.
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7 Hypothesis Testing [5 + 3 + 2 4+ 5 points]

Consider a random variable Y that follows one of two distributions. Let X be a binary random
variable indicating the true distribution of Y:

[0 YN
L, Y~ U-N@ D)+ (1= U) - N(=2,1), where U ~ Bernoulli(1).

Follow the steps below to construct a Neyman-Pearson decision rule X (V) that maximizes

A~

P(X(Y)=1|X = 1) under the constraint that P(X(Y) =1| X = 0) < 3.
(a) Find the likelihood ratio L(y) for y € R. Simplify L(y) and show that L(y) = (e +e~%)/(2¢?).
(

)
b) Consider y; > yo > 0. Show that L(y;) > L(y2).
(c) Argue that for y; < y» <0, L(y1) > L(y2).

)

(d) Construct a Neyman—Pearson decision rule. Leave your answer(s) for the decision boundary in
terms of ®~!, the inverse CDF of the standard normal distribution.

()

exp(—3(y — 2)?) + exp(—3(y +2)?)

o= 2 exp(—317%)

(exp (—%(—@ + 4)) + exp (—%(411 + 4)))

e 4 e~
2¢e?

(b) Fory >0, £ L(y) = (e®—e*)/(2¢%) > 0. This means that for y; > yo > 0, L(y1) > L(ys).
(c¢) This follows from parts (a) and (b), since our likelihood function is symmetric.

(d) Since our likelihood function increases with [y|, this is a two-tailed hypothesis test, where
the null hypothesis is the standard normal. Hence, X = 1 when |y| > ®~!(1 — /2), and
X =0 when |y| < &1 — 5/2).
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8 Some Estimation [3 + 5 + 3 + 4 points]
Consider the following joint PDF of two random variables X and Y:

k(o) +y), —1<2<1,0<y<1

0, otherwise.

fxy(z,y) = {

(a) Determine k.

(b) Find the minimum mean squared error estimator of Y given X, i.e. MMSE[Y | X = z].

(c¢) Determine cov(X,Y'). Hint: You shouldn’t need to compute integrals.
)

(d) Determine the linear least squares estimator of Y given X, i.e. LY | X = z].

(a) We determine k by ensuring that the joint PDF integrates to 1. Noticing that the PDF is
symmetric across the y-axis, we know that

11
1:2k//(x—|—y)dxdy:2k;.
o Jo

Therefore k£ = %

(b) In order to calculate the MMSE, we calculate the conditional PDF fyx(y | x). We first
calculate the marginal PDF of X over [—1,1]:

1! 1 1
ete) = [lol+van =3 (1l + ).

Therefore we can determine the conditional PDF and conditional expectation as

 fxy(ry) x|ty

x| +y 3|x| + 2
S
|z| + 5 6lz| + 3

E[Y!X:x]:/oly

(¢) By symmetry, E[X] = 0. Similarly, for every XY positive, there exists a XY negative with
equal probability density. This means that E[XY] = E[X]E[Y] =0, i.e. cov(X,Y) = 0.
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(d) Since the covariance is 0,

cov(X,Y)

L[Y|X:[E]:E[Y]+mr—m

(X —E[X])

:E[Y]:/Ol/oly(:v+y)dxdy:1—72.
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9 Basketball ITI [4 4+ 6 + 6 points]

Captain America and Superman return for one final game of basketball! Unfortunately, there is
a tall fence between you and the basketball court, so you must repeatedly jump up and down at
times n = 1,2, 3, ... to watch the game.

To figure out who wins in the end, you decide to track the ball’s z-coordinate, where Xy = 0
represents the center of the court. The state space equations are as follows. Note that the dynamics
model A, is not time-homogeneous.

For your reference, the (now slightly modified) Kalman filter equations are given below.

% % 2 2 2 2
Xn\nfl < Aan71|n71 O_n|n—1 A Ano_n—1|n—1 + Oy
¥, 9 2 2 2
Y, <Y, — Xn|n—1 Kn — 0n|n—1/(an|n—1 + UWn)
X X K,Y, o (1= Ky) o
nln < Anjn—1 + KpYy Un|n n O-n\n—l'

(a) Find the distribution of Y;,. Your answer should not depend on any other random variables.
(b) Find Xn|n as a summation in terms of Ay, K}, and Yy, for k=1,...,n.

(c¢) Find Xg‘g as a function of Y; and Y5, assuming we initialize X0|0 <+ 0 and 0[2)|0 +~ 0.

You may use the fact that Ky =4/7.

(a) We have two recurrence relations: E(X,) = (—=1)" - E(X,,_1), with base case E(X,) = 0,
and var(X,) = 1-var(X,_1) + var(V},), with base case var(Xy) = 0. Thus

E(Y,) =E(X,) =0
var(Y,) = var(X,) + var(W,) = 3n.

The initial state is constant (i.e. a degenerate Gaussian), and the noises are also Gaussian
distributed, so Y, is jointly Gaussian and distributed as N (0, 3n).

(b) We rederive the following recurrence relation for Xn|n:

Xn\n = Aan—l\n—l + Kn(Yn - Aan—l\n—l)

- [(1 - Kn)An] Xn—l|n—1 + KnYn

= A, X\, _1jn—1 + Z,, for convenience.
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The base case is given by X0|0 = 0, so expanding out the recurrence,

An|n — (A, XO|0 + Z A;f—l—l k

3

(1= Kp) - (1= Kpen) Ay - - Apir] Ky Yo

k=1
(c) We can find the estimation variances and gains offline:
o3 1-0g0+2=2
Ky ofplotp+1)7' =2/3
ofp « (L= K1) - 019 =2/3
oy 1.0, +2=8/3
Ky o3 (05, +2)71 = 4/7
o3y < (1= Ky) - 03, = 8/7.

We finish by using the result found in the previous part:

% 2 4
Xopp = [(1 = Ka)As] K1Y1 + KoY, = §Y1 + ?}/2
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10

Cheat Sheet

X ~ Bernoulli(p), p € [0, 1].

PMF: pX( ) p (1 _p)l—x’ T e {07 1}
MGF: Mx(s) =1—p+pexps.
Moments: E[X]| = p, var X = p(1 — p).
X ~ Binomial(n,p), n € Z, p € [0, 1].
PMF: px (2) = (2)p*(1—p)"*, € {0,..
MGF: Mx(s) = (1 —p+pexps)™.
Moments: E[X]| = np, var X = np(1 — p).

X ~ Geometric(p), p € (0, 1).

PMF: px(z) =p¢®* ', 2 €Zy,q=1—p.
MGF: Mx(s) = (pexps)/(1—qexps), s <
In(1/q).

Moments: E[X]| = p~!, var X = ¢q/p>.

X ~ Poisson(A), A > 0.

PMF: px(z) = A exp(—\)/z!, x € N,

MGF: Mx(s) = exp(A(exps — 1)).
Moments: E[X]| = A, var X = .

X,Y independent, X ~ Poisson(\), ¥ ~
Poisson(p) = X +Y ~ Poisson(A + pu).

X ~ Uniform[a, b], a < b.

PDF: fx(z) = (b—a)™', z € [a,b].

N;?F: Mx (s) = (exp(sb) —exp(sa))/(s(b—
Moments: E[X] = (a +b)/2, var X = (b —
a)?/12.

X ~ Exponential(A), A > 0.

PDF: fx(z) = Aexp(—Ax), = > 0.
CDF: Fx(x) = (1 —exp(—Az)), x > 0.
MGF: Mx(s) = /(A —s), s < A
Moments: E[X] = A7!, var X = A72.

Student ID:

o X ~N(u,0%), n€R, 0% >0.
PDF: fx(r) = (V7o) exp(—(a—u)?/(20)).
CDF: Fx(x) = ®((x — p) /o).

MGF: Mx(s) = exp(us + 02s%/2).
Moments: E[X] = p, var X = o2

X,Y independent, X ~ N(M1,01) Y ~
N(Mg,d%) — X +Y ~ N(M1+N2,01+

., n}. 3).

o X ~ Erlang(k, ), k € Z,, A > 0.
Sum of k i.i.d. Exponential(\).
PDF: fx(z) = MaFlexp(—\x)/(k — 1)!,

x> 0.
Tail Sum: For X > 0, E[X] = [[° Pr(X > z)da.

Variance: var X = E[(X — E[X])?] = E[X?] —
E[X]?.

Sum: var ) ;L) Xi = D0, var Xi+) 0, cov (X, Xj).
=E[XY]

Covariance: cov(X,Y) — E[X]E[Y].

Correlation: p(X,Y) = cov(X,Y)//(var X)(varY).
— 2zex P(¥) l0gy p(2).

n(ioy) (@) F () (1=

Entropy: H(X) =

Order Statistics: fxu (z) =
F(x))".

MGEF: Mx(s) = E[exp(sX)].

Markov: For X > 0, x > 0, Pr(X > «x)

Chebyshev: For x > 0, Pr(|X — E[X]| > z) <
(var X)/x?.

IN

Chernoff: For t > 0, Pr(X > z) = Pr(e" > ).
For t > 0, Pr(X < ) = Pr(e”™X > 7).

LLSE: LY | X] = E[Y] + <=&20(X - E[X]).

MMSE: MMSE[Y | X] = E[Y|X].



