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Rules.

• Unless otherwise stated, all your answers need to be simplified and justified, and
your work must be shown. Answers without sufficient justification will get no
credit; answers without simplification may only get partial credit.

• You have 170 minutes to complete the exam. (DSP students with X% time accommodation
should spend 170 ·X% time on the exam).

• This exam is not open book. You may reference three double-sided handwritten sheets of
paper. No calculator or phones allowed.

• Collaboration with others is strictly prohibited. If you are caught cheating, you will receive a
0 on the final and will face disciplinary consequences.

• Write in your SID on every page to receive 1 point.

Problem points earned out of

SID/CAPTCHA 2

Problem 2 53

Problem 3 16

Problem 4 11

Problem 5 16

Problem 6 20

Problem 7 15

Problem 8 15

Problem 9 16

Total 164
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1 CAPTCHA [1 point]

Bubble in the selection corresponding to Professor Kannan Ramchandran.

2 Potpourri [7 + 7 + 7 + 7 + 8 + 7 + 10 points]

(a) Exponential Sampling [7 points]

Suppose you are able to generate values from U ∼ Uniform[0, 5]. How can you simulate and
sample values from an exponential distribution using U and FX(x), where X ∼ Exponential(λ)?
Provide complete justification for full credit.
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(b) Gob ears! [7 points]

Sohom is watching the price of GBRS stock and notices that on each day, the stock either
doubles or halves in price with equal probability. If Xn is the price of the stock on day n, then

Xn+1 =

{
2Xn w.p. 1/2
1
2
Xn w.p. 1/2.

Suppose X0 = 1. Using the Central Limit Theorem, find a 95% confidence interval for X100.
You may approximate a 95% confidence interval with 2 standard deviations above and below
the mean.

(c) Chernoff Bounding [7 points]

For a random variableX ∼ Erlang(2, 5), find the tightest upper bound on P(X ≥ 1) given by the
Chernoff bound. As a reminder, Erlang(k, λ) is equivalent to the sum of k i.i.d. Exponential(λ)
random variables.

(d) Entropic Kitchen [2 + 5 points]
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The number of dishes X in Akshit’s sink at night is distributed as follows:

X =


2 w.p. 1

3

4 w.p. 1
3

8 w.p. 1
3
.

His roommate, Matt, either does all of the dishes (Y = 1) or none of them (Y = 0) according
to the following model:

Y ∼

{
Bernoulli(2

3
) if X ≤ 4

Bernoulli(1
3
) if X > 4.

(i) Find H(X), the entropy of X.

(ii) Akshit comes home and finds that the dishes are done. Find H(X | Y = 1).

(e) Comparing Gaussians [4 + 4 points]

Answer True/False for the following two parts. If True, justify your answer. If False, provide a
counterexample.

(i) If X and Y are jointly Gaussian, do they have Gaussian marginal distributions?

(ii) Is the converse true? If X and Y both have Gaussian marginal distributions, are they
jointly Gaussian?
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(f) Quadratic Estimation [7 points]

Given zero-mean random variables X and Y , find the best quadratic estimator Q[Y | X] if
E[X3] = 0. Your answer can contain expectations of X and Y such as E[X] or E[XY 2]. Be
sure to simplify completely and justify your work.
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(g) German Tank Problem [3 + 7 points]

Rohit is working for Allied intelligence during WWII. He is tasked with estimating N , the total
number of German tanks. Every so often, the troops capture a tank (and don’t release it) and
record its serial number, which run from 1 to N and are all distinct and equally likely to be
found. Suppose the army finds two distinct serial numbers X1 and X2.

(i) Find the MLE of N given X1, X2.

(ii) Suppose an expert says that the prior distribution is N ∼ Geometric(p). Derive the
quadratic equation using the log likelihood to find the MAP of N given X1, X2. If your
equation could produce a non-integral value, explain how you would fix this.
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3 AlexBot [3 + 5 + 5 + 3 points]

AlexBot is taking a random walk on the non-negative integers {0, 1, 2, . . .}. Let (Xn)n≥0 be a
Markov chain, where Xn is its position at time n. The bot is programmed to do the following at
each time step. At a state i > 0, it goes to state i + 1 with probability p, state i − 1 w.p. q, and
stays in state i w.p. 1 − p − q, where p < q and p + q ≤ 1. At state 0, there is a toy cannon that
launches the bot onto a random state i > 0 according to a distribution π with expectation c <∞,
independent of any other event. In other words, the transition matrix P is given by

Pi,j =


p if i > 0 and j = i+ 1

q if i > 0 and j = i− 1

1− p− q if i > 0 and j = i

π(j) if i = 0.

You may assume that π(i) is nonzero for at least one i > 0.

a) Use the strong law of large numbers to show that from any state i, the bot would eventually
reach state 0 as time goes to infinity.

b) Find the expected amount of time for the bot to reach state 0, starting from any state i > 0.
Hint : What can you say about the relationship between expected time from state 1 to 0 and
the expected time from state k + 1 to k for k > 0?

c) Find E[T ], where T = min{t > 0 : Xt = 0 | X0 = 0} is the first return time to state 0. Don’t
forget that riding the cannon also takes one time step, and recall that the expectation of π is c.

d) Which states of the Markov Chain, if any, are positive recurrent? Justify your answer, and show
irreducibility if necessary.
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4 Caffeinated [2 + 2 + 7 points]

Catherine opens a coffee shop. Customers arrive according a Poisson process of rate λ.

(a) Let A be the event that Catherine got 100 sales in the first 100 minutes. Let T1 and T2 be the
times when Catherine gets her first sale and the 101st sale. What is the conditional expectation
of T2 given A?

(b) What is the conditional expectation of T1 given A?

(c) Aadil comes to help Catherine. Both Catherine and Aadil have Exponential service times
with rate µ. Catherine always serves customers first, and Aadil will only serve a customer if
Catherine is busy. Assuming the coffee shop starts out empty at the start of the day, how long
is Aadil expected to wait before he serves a customer?
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5 Gamblers [7 + 4 + 5 points]

Kamyar and Zhiwei are at a casino and observe that gamblers arrive as a Poisson process with rate
1 to play on one of three slot machines. Arriving gamblers will taken any random machine that is
available, or leave immediately if none are available. Gamblers who get on the machines stay for
an Exponential(1) amount of time independently of each other.

(a) Consider a CTMC which tracks the number of machines that are available or in use. Find the
stationary distribution of this CTMC.

(b) Assume the chain has been running for a long time. If a gambler arrives, what is the probability
that the first machine is open and the gambler starts playing on it?

(c) Suppose the casino has just opened, so all the slot machines are available. Set up equations to
find the expected amount of time before a gambler leaves immediately after arriving (due to all
machines being taken). You may leave the equations unsolved.
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6 Random MCs [6 + 8 + 6 points]

Consider the Erdős–Rényi random graph G ∼ G(n, p(n)) on the state space S := {0, . . . , n − 1},
where each edge in G exists independently with probability p(n). Every such random graph uniquely
describes a Markov chain on S as follows:

For vertices with positive (nonzero) degree deg(i), the transition probabilities are given by

P (i, j) =

{
1

deg(i)
if (i, j) ∈ E(G)

0 otherwise.

where E(G) denotes the edge set of G. Otherwise, when deg(i) = 0, P (i, i) = 1. For example,
consider the following Markov chain created using the process above:

10

2

3

4
1
1
3

1
3

1
2

1
3

1
2

1
2

1
2 1

In the following parts, a “random Markov chain” refers to the corresponding Markov chain from
sampling a random graph G ∼ G(n, p(n)), not just the specific example given above. Justify any
properties or equations of Markov chains and random graphs that you use.

(a) As n → ∞, find the probability that a random MC has at least one stationary distribution.
You may leave your answer in terms of p(n) if necessary.

(b) Consider a “typical” vertex i in a “typical” random graph G. Specifically, let |E(G)| be equal to
the expected number of edges in a random graph drawn from G(n, p(n)), and let deg(i) be the
expected degree of a randomly chosen vertex in G ∼ G(n, p(n)). Compute the expected return
time in the associated random MC for vertex i: Ei(T

+
i ) = E[min{t ≥ 1 : Xt = i} | X0 = i].

(c) Suppose that p(n) ∈ o( 1
n
), i.e. as n → ∞, n · p(n) → 0. As n → ∞, find the probability

that a random MC is reversible. (Hint : Recall that this is the subcritical phase, where the
probability that G ∼ G(n, p(n)) contains no cycles tends to 1 as n→∞.)
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7 Hypothesis Testing [5 + 3 + 2 + 5 points]

Consider a random variable Y that follows one of two distributions. Let X be a binary random
variable indicating the true distribution of Y :

X =

{
0, Y ∼ N (0, 1)

1, Y ∼ U · N (2, 1) + (1− U) · N (−2, 1), where U ∼ Bernoulli(1
2
).

Follow the steps below to construct a Neyman–Pearson decision rule X̂(Y ) that maximizes
P(X̂(Y ) = 1 | X = 1) under the constraint that P(X̂(Y ) = 1 | X = 0) ≤ β.

(a) Find the likelihood ratio L(y) for y ∈ R. Simplify L(y) and show that L(y) = (e2y+e−2y)/(2e2).

(b) Consider y1 > y2 > 0. Show that L(y1) > L(y2).

(c) Argue that for y1 < y2 < 0, L(y1) > L(y2).

(d) Construct a Neyman–Pearson decision rule. Leave your answer(s) for the decision boundary in
terms of Φ−1, the inverse CDF of the standard normal distribution.



Final Page 12 of 14 Student ID:

8 Some Estimation [3 + 5 + 3 + 4 points]

Consider the following joint PDF of two random variables X and Y :

fX,Y (x, y) =

{
k(|x|+ y), −1 ≤ x ≤ 1, 0 ≤ y ≤ 1

0, otherwise.

(a) Determine k.

(b) Find the minimum mean squared error estimator of Y given X, i.e. MMSE[Y | X = x].

(c) Determine cov(X, Y ). Hint : You shouldn’t need to compute integrals.

(d) Determine the linear least squares estimator of Y given X, i.e. L[Y | X = x].
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9 Basketball III [4 + 6 + 6 points]

Captain America and Superman return for one final game of basketball! Unfortunately, there is
a tall fence between you and the basketball court, so you must repeatedly jump up and down at
times n = 1, 2, 3, . . . to watch the game.

To figure out who wins in the end, you decide to track the ball’s x-coordinate, where X0 = 0
represents the center of the court. The state space equations are as follows. Note that the dynamics
model An is not time-homogeneous.

Xn = AnXn−1 + Vn An = (−1)n, Vn
i.i.d.∼ N (0, 2);

Yn = Xn +Wn Wn
⊥⊥∼ N (0, n).

For your reference, the (now slightly modified) Kalman filter equations are given below.

X̂n|n−1 ← AnX̂n−1|n−1

Ỹn ← Yn − X̂n|n−1

X̂n|n ← X̂n|n−1 +KnỸn

σ2
n|n−1 ← A2

nσ
2
n−1|n−1 + σ2

V

Kn ← σ2
n|n−1/(σ

2
n|n−1 + σ2

Wn
)

σ2
n|n ← (1−Kn)σ

2
n|n−1.

(a) Find the distribution of Yn. Your answer should not depend on any other random variables.

(b) Find X̂n|n as a summation in terms of Ak, Kk, and Yk for k = 1, . . . , n.

(c) Find X̂2|2 as a function of Y1 and Y2, assuming we initialize X̂0|0 ← 0 and σ2
0|0 ← 0.

You may use the fact that K2 = 4/7.
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10 Cheat Sheet

• X ∼ Bernoulli(p), p ∈ [0, 1].

PMF: pX(x) = px(1− p)1−x, x ∈ {0, 1}.
MGF: MX(s) = 1− p+ p exp s.

Moments: E[X] = p, varX = p(1− p).

• X ∼ Binomial(n, p), n ∈ Z+, p ∈ [0, 1].

PMF: pX(x) =
(
n
x

)
px(1−p)n−x, x ∈ {0, . . . , n}.

MGF: MX(s) = (1− p+ p exp s)n.

Moments: E[X] = np, varX = np(1− p).

• X ∼ Geometric(p), p ∈ (0, 1).

PMF: pX(x) = pqx−1, x ∈ Z+, q = 1− p.

MGF: MX(s) = (p exp s)/(1− q exp s), s <
ln(1/q).

Moments: E[X] = p−1, varX = q/p2.

• X ∼ Poisson(λ), λ > 0.

PMF: pX(x) = λx exp(−λ)/x!, x ∈ N.
MGF: MX(s) = exp(λ(exp s− 1)).

Moments: E[X] = λ, varX = λ.

X, Y independent, X ∼ Poisson(λ), Y ∼
Poisson(µ) =⇒ X + Y ∼ Poisson(λ+ µ).

• X ∼ Uniform[a, b], a < b.

PDF: fX(x) = (b− a)−1, x ∈ [a, b].

MGF: MX(s) = (exp(sb)−exp(sa))/(s(b−
a)).

Moments: E[X] = (a + b)/2, varX = (b−
a)2/12.

• X ∼ Exponential(λ), λ > 0.

PDF: fX(x) = λ exp(−λx), x > 0.

CDF: FX(x) = (1− exp(−λx)), x ≥ 0.

MGF: MX(s) = λ/(λ− s), s < λ.

Moments: E[X] = λ−1, varX = λ−2.

• X ∼ N (µ, σ2), µ ∈ R, σ2 > 0.

PDF: fX(x) = (
√
2πσ)−1 exp(−(x−µ)2/(2σ2)).

CDF: FX(x) = Φ((x− µ)/σ).

MGF: MX(s) = exp(µs+ σ2s2/2).

Moments: E[X] = µ, varX = σ2.

X, Y independent, X ∼ N (µ1, σ
2
1), Y ∼

N (µ2, σ
2
2) =⇒ X + Y ∼ N (µ1 + µ2, σ

2
1 +

σ2
2).

• X ∼ Erlang(k, λ), k ∈ Z+, λ > 0.

Sum of k i.i.d. Exponential(λ).

PDF: fX(x) = λkxk−1 exp(−λx)/(k − 1)!,
x ≥ 0.

Tail Sum: For X ≥ 0, E[X] =
∫∞
0

Pr(X ≥ x) dx.

Variance: varX = E[(X − E[X])2] = E[X2] −
E[X]2.

Sum: var
∑n

i=1Xi =
∑n

i=1 varXi+
∑

i ̸=j cov(Xi, Xj).

Covariance: cov(X, Y ) = E[XY ]− E[X]E[Y ].

Correlation: ρ(X, Y ) = cov(X, Y )/
√

(varX)(varY ).

Entropy: H(X) = −
∑

x∈X p(x) log2 p(x).

Order Statistics: fX(i)(x) = n
(
n−1
i−1

)
f(x)F (x)i−1(1−

F (x))n−i.

MGF: MX(s) = E[exp(sX)].

Markov: For X ≥ 0, x > 0, Pr(X ≥ x) ≤
E[X]/x.

Chebyshev: For x > 0, Pr(|X − E[X]| ≥ x) ≤
(varX)/x2.

Chernoff: For t > 0, Pr(X ≥ x) = Pr(etX ≥ etx).
For t > 0, Pr(X ≤ x) = Pr(e−tX ≥ e−tx).

LLSE: L[Y | X] = E[Y ] + cov(X,Y )
var(X)

(X − E[X]).

MMSE: MMSE[Y | X] = E[Y |X].


